ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06632
11
9

Metamorphic Testing of a Deep Learning based Forecaster

13 July 2019
Anurag Dwarakanath
Manish Ahuja
Sanjay Podder
Silja Vinu
Arijit Naskar
M. Koushik
    AI4TS
ArXivPDFHTML
Abstract

In this paper, we present the Metamorphic Testing of an in-use deep learning based forecasting application. The application looks at the past data of system characteristics (e.g. `memory allocation') to predict outages in the future. We focus on two statistical / machine learning based components - a) detection of co-relation between system characteristics and b) estimating the future value of a system characteristic using an LSTM (a deep learning architecture). In total, 19 Metamorphic Relations have been developed and we provide proofs & algorithms where applicable. We evaluated our method through two settings. In the first, we executed the relations on the actual application and uncovered 8 issues not known before. Second, we generated hypothetical bugs, through Mutation Testing, on a reference implementation of the LSTM based forecaster and found that 65.9% of the bugs were caught through the relations.

View on arXiv
Comments on this paper