Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,309 papers shown
Title
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
13
70
0
16 Jun 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
32
31
0
16 Jun 2020
Scalable Cross Lingual Pivots to Model Pronoun Gender for Translation
Kellie Webster
Emily Pitler
22
5
0
16 Jun 2020
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
54
1,588
0
15 Jun 2020
Hindsight Logging for Model Training
Rolando Garcia
Eric Liu
Vikram Sreekanti
Bobby Yan
Anusha Dandamudi
Joseph E. Gonzalez
J. M. Hellerstein
Koushik Sen
VLM
29
10
0
12 Jun 2020
Generalized SHAP: Generating multiple types of explanations in machine learning
Dillon Bowen
L. Ungar
FAtt
11
41
0
12 Jun 2020
SegNBDT: Visual Decision Rules for Segmentation
Alvin Wan
Daniel Ho
You Song
Henk Tillman
Sarah Adel Bargal
Joseph E. Gonzalez
SSeg
27
6
0
11 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
50
112
0
11 Jun 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
22
77
0
11 Jun 2020
Scalable Partial Explainability in Neural Networks via Flexible Activation Functions
S. Sun
Chen Li
Zhuangkun Wei
Antonios Tsourdos
Weisi Guo
FAtt
32
2
0
10 Jun 2020
OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms
Giorgio Visani
Enrico Bagli
F. Chesani
FAtt
27
60
0
10 Jun 2020
Why Attentions May Not Be Interpretable?
Bing Bai
Jian Liang
Guanhua Zhang
Hao Li
Kun Bai
Fei Wang
FAtt
25
56
0
10 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei Wang
AAML
59
18
0
09 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
53
0
09 Jun 2020
Stealing Deep Reinforcement Learning Models for Fun and Profit
Kangjie Chen
Shangwei Guo
Tianwei Zhang
Xiaofei Xie
Yang Liu
MLAU
MIACV
OffRL
24
45
0
09 Jun 2020
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
33
77
0
08 Jun 2020
BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray dataset
A. Signoroni
Mattia Savardi
Sergio Benini
Nicola Adami
R. Leonardi
...
F. Vaccher
M. Ravanelli
A. Borghesi
R. Maroldi
D. Farina
21
37
0
08 Jun 2020
Propositionalization and Embeddings: Two Sides of the Same Coin
Nada Lavrac
Blaž Škrlj
Marko Robnik-Šikonja
21
26
0
08 Jun 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
34
217
0
05 Jun 2020
Location, location, location: Satellite image-based real-estate appraisal
Jan-Peter Kucklick
Oliver Müller
28
5
0
04 Jun 2020
Consistent feature selection for neural networks via Adaptive Group Lasso
L. Ho
Vu C. Dinh
OOD
22
9
0
30 May 2020
AI Research Considerations for Human Existential Safety (ARCHES)
Andrew Critch
David M. Krueger
30
50
0
30 May 2020
A Performance-Explainability Framework to Benchmark Machine Learning Methods: Application to Multivariate Time Series Classifiers
Kevin Fauvel
Véronique Masson
Elisa Fromont
AI4TS
44
17
0
29 May 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
49
157
0
27 May 2020
Who is this Explanation for? Human Intelligence and Knowledge Graphs for eXplainable AI
I. Celino
12
5
0
27 May 2020
Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport
Kyle Swanson
L. Yu
Tao Lei
OT
29
37
0
27 May 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
The best way to select features?
Xin Man
Ernest P. Chan
16
60
0
26 May 2020
NILE : Natural Language Inference with Faithful Natural Language Explanations
Sawan Kumar
Partha P. Talukdar
XAI
LRM
27
160
0
25 May 2020
Towards Analogy-Based Explanations in Machine Learning
Eyke Hüllermeier
XAI
16
20
0
23 May 2020
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
27
51
0
21 May 2020
A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation
T. Dissanayake
Tharindu Fernando
Simon Denman
Sridha Sridharan
H. Ghaemmaghami
Clinton Fookes
8
8
0
21 May 2020
Interpretable and Accurate Fine-grained Recognition via Region Grouping
Zixuan Huang
Yin Li
17
138
0
21 May 2020
An Adversarial Approach for Explaining the Predictions of Deep Neural Networks
Arash Rahnama
A.-Yu Tseng
FAtt
AAML
FaML
25
5
0
20 May 2020
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
Yipeng Hu
J. Jacob
Geoffrey J. M. Parker
D. Hawkes
J. Hurst
Danail Stoyanov
OOD
23
65
0
19 May 2020
Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps
Tobias Huber
Katharina Weitz
Elisabeth André
Ofra Amir
FAtt
21
64
0
18 May 2020
Applying Genetic Programming to Improve Interpretability in Machine Learning Models
Leonardo Augusto Ferreira
F. G. Guimarães
Rodrigo C. P. Silva
14
37
0
18 May 2020
Reliable Local Explanations for Machine Listening
Saumitra Mishra
Emmanouil Benetos
Bob L. T. Sturm
S. Dixon
AAML
FAtt
12
20
0
15 May 2020
Evolved Explainable Classifications for Lymph Node Metastases
Iam Palatnik de Sousa
M. Vellasco
E. C. Silva
19
6
0
14 May 2020
Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions
Xiaochuang Han
Byron C. Wallace
Yulia Tsvetkov
MILM
FAtt
AAML
TDI
28
165
0
14 May 2020
Ensembled sparse-input hierarchical networks for high-dimensional datasets
Jean Feng
N. Simon
19
4
0
11 May 2020
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
38
88
0
08 May 2020
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro
Tongshuang Wu
Carlos Guestrin
Sameer Singh
ELM
52
1,084
0
08 May 2020
XEM: An Explainable-by-Design Ensemble Method for Multivariate Time Series Classification
Kevin Fauvel
Elisa Fromont
Véronique Masson
P. Faverdin
Alexandre Termier
AI4TS
33
41
0
07 May 2020
A Locally Adaptive Interpretable Regression
Lkhagvadorj Munkhdalai
Tsendsuren Munkhdalai
K. Ryu
14
5
0
07 May 2020
Contextualizing Hate Speech Classifiers with Post-hoc Explanation
Brendan Kennedy
Xisen Jin
Aida Mostafazadeh Davani
Morteza Dehghani
Xiang Ren
27
138
0
05 May 2020
Don't Explain without Verifying Veracity: An Evaluation of Explainable AI with Video Activity Recognition
Mahsan Nourani
Chiradeep Roy
Tahrima Rahman
Eric D. Ragan
Nicholas Ruozzi
Vibhav Gogate
AAML
15
17
0
05 May 2020
A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds
M. Kovalev
Lev V. Utkin
AAML
43
31
0
05 May 2020
Post-hoc explanation of black-box classifiers using confident itemsets
M. Moradi
Matthias Samwald
62
98
0
05 May 2020
Previous
1
2
3
...
76
77
78
...
85
86
87
Next