Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,309 papers shown
Title
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
38
218
0
01 May 2020
The Grammar of Interactive Explanatory Model Analysis
Hubert Baniecki
Dariusz Parzych
P. Biecek
24
44
0
01 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
46
406
0
29 Apr 2020
An Explainable Deep Learning-based Prognostic Model for Rotating Machinery
Namkyoung Lee
M. Azarian
M. Pecht
16
14
0
28 Apr 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
59
1,192
0
28 Apr 2020
Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data
B. Shickel
Parisa Rashidi
AI4TS
33
17
0
27 Apr 2020
An Extension of LIME with Improvement of Interpretability and Fidelity
Sheng Shi
Yangzhou Du
Wei Fan
FAtt
16
8
0
26 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
22
191
0
23 Apr 2020
Learning a Formula of Interpretability to Learn Interpretable Formulas
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
25
33
0
23 Apr 2020
Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks
Narinder Singh Punn
Sonali Agarwal
15
191
0
23 Apr 2020
Perturb More, Trap More: Understanding Behaviors of Graph Neural Networks
Chaojie Ji
Ruxin Wang
Hongyan Wu
31
7
0
21 Apr 2020
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
SSL
CML
37
118
0
20 Apr 2020
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
22
22
0
17 Apr 2020
CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation
Dustin L. Arendt
Zhuanyi Huang
Prasha Shrestha
Ellyn Ayton
M. Glenski
Svitlana Volkova
32
8
0
16 Apr 2020
Explaining Regression Based Neural Network Model
Mégane Millan
Catherine Achard
FAtt
24
3
0
15 Apr 2020
Deep Learning Models for Multilingual Hate Speech Detection
Sai Saket Aluru
Binny Mathew
Punyajoy Saha
Animesh Mukherjee
16
148
0
14 Apr 2020
Complaint-driven Training Data Debugging for Query 2.0
Weiyuan Wu
Lampros Flokas
Eugene Wu
Jiannan Wang
32
43
0
12 Apr 2020
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
Alon Jacovi
Yoav Goldberg
XAI
48
571
0
07 Apr 2020
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
19
12
0
06 Apr 2020
Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
Hanjie Chen
Guangtao Zheng
Yangfeng Ji
FAtt
38
92
0
04 Apr 2020
Attribution in Scale and Space
Shawn Xu
Subhashini Venugopalan
Mukund Sundararajan
FAtt
BDL
14
71
0
03 Apr 2020
Under the Hood of Neural Networks: Characterizing Learned Representations by Functional Neuron Populations and Network Ablations
Richard Meyes
Constantin Waubert de Puiseau
Andres Felipe Posada-Moreno
Tobias Meisen
AI4CE
30
21
0
02 Apr 2020
NBDT: Neural-Backed Decision Trees
Alvin Wan
Lisa Dunlap
Daniel Ho
Jihan Yin
Scott Lee
Henry Jin
Suzanne Petryk
Sarah Adel Bargal
Joseph E. Gonzalez
26
99
0
01 Apr 2020
Ontology-based Interpretable Machine Learning for Textual Data
Phung Lai
Nhathai Phan
Han Hu
Anuja Badeti
David Newman
Dejing Dou
19
8
0
01 Apr 2020
Code Prediction by Feeding Trees to Transformers
Seohyun Kim
Jinman Zhao
Yuchi Tian
S. Chandra
48
217
0
30 Mar 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
47
120
0
26 Mar 2020
Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples
Alejandro Barredo Arrieta
Javier Del Ser
AAML
15
22
0
25 Mar 2020
Layerwise Knowledge Extraction from Deep Convolutional Networks
S. Odense
Artur Garcez
FAtt
26
9
0
19 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Directions for Explainable Knowledge-Enabled Systems
Shruthi Chari
Daniel Gruen
Oshani Seneviratne
D. McGuinness
XAI
18
32
0
17 Mar 2020
Foundations of Explainable Knowledge-Enabled Systems
Shruthi Chari
Daniel Gruen
Oshani Seneviratne
D. McGuinness
41
28
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
19
126
0
16 Mar 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
Model Agnostic Multilevel Explanations
Karthikeyan N. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
29
41
0
12 Mar 2020
xCos: An Explainable Cosine Metric for Face Verification Task
Yu-sheng Lin
Zhe-Yu Liu
Yu-An Chen
Yu-Siang Wang
Ya-Liang Chang
Winston H. Hsu
CVBM
33
46
0
11 Mar 2020
Fairness by Explicability and Adversarial SHAP Learning
James M. Hickey
Pietro G. Di Stefano
V. Vasileiou
FAtt
FedML
33
19
0
11 Mar 2020
Machine Learning for Intelligent Optical Networks: A Comprehensive Survey
Rentao Gu
Zeyuan Yang
Yuefeng Ji
27
109
0
11 Mar 2020
IROF: a low resource evaluation metric for explanation methods
Laura Rieger
Lars Kai Hansen
28
55
0
09 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
29
213
0
09 Mar 2020
Link Prediction using Graph Neural Networks for Master Data Management
Balaji Ganesan
Srinivas Parkala
Neeraj R Singh
Sumit Bhatia
Gayatri Mishra
Matheen Ahmed Pasha
Hima Patel
Somashekar Naganna
AI4CE
35
11
0
07 Mar 2020
MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers
Wei Song
Xuezixiang Li
Sadia Afroz
D. Garg
Dmitry Kuznetsov
Heng Yin
AAML
55
27
0
06 Mar 2020
What went wrong and when? Instance-wise Feature Importance for Time-series Models
S. Tonekaboni
Shalmali Joshi
Kieran Campbell
David Duvenaud
Anna Goldenberg
FAtt
OOD
AI4TS
56
14
0
05 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
59
93
0
05 Mar 2020
EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis
Andrea Morichetta
P. Casas
Marco Mellia
15
55
0
03 Mar 2020
Two Decades of AI4NETS-AI/ML for Data Networks: Challenges & Research Directions
P. Casas
GNN
19
8
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
A Study on Multimodal and Interactive Explanations for Visual Question Answering
Kamran Alipour
J. Schulze
Yi Yao
Avi Ziskind
Giedrius Burachas
32
27
0
01 Mar 2020
Previous
1
2
3
...
77
78
79
...
85
86
87
Next