ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02439
6
137

Contextualizing Hate Speech Classifiers with Post-hoc Explanation

5 May 2020
Brendan Kennedy
Xisen Jin
Aida Mostafazadeh Davani
Morteza Dehghani
Xiang Ren
ArXivPDFHTML
Abstract

Hate speech classifiers trained on imbalanced datasets struggle to determine if group identifiers like "gay" or "black" are used in offensive or prejudiced ways. Such biases manifest in false positives when these identifiers are present, due to models' inability to learn the contexts which constitute a hateful usage of identifiers. We extract SOC post-hoc explanations from fine-tuned BERT classifiers to efficiently detect bias towards identity terms. Then, we propose a novel regularization technique based on these explanations that encourages models to learn from the context of group identifiers in addition to the identifiers themselves. Our approach improved over baselines in limiting false positives on out-of-domain data while maintaining or improving in-domain performance. Project page: https://inklab.usc.edu/contextualize-hate-speech/.

View on arXiv
Comments on this paper