Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.02964
Cited By
A Kernel Test of Goodness of Fit
9 February 2016
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernel Test of Goodness of Fit"
45 / 95 papers shown
Title
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
26
50
0
20 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
36
35
0
07 May 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
42
9
0
15 Apr 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
32
75
0
15 Apr 2021
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
34
18
0
30 Mar 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
53
22
0
25 Feb 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
31
19
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
106
187
0
12 Jan 2021
Characterizations of non-normalized discrete probability distributions and their application in statistics
Steffen Betsch
B. Ebner
F. Nestmann
41
13
0
09 Nov 2020
Two-sample Test using Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
37
19
0
22 Oct 2020
Testing for Normality with Neural Networks
M. Simic
29
6
0
29 Sep 2020
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
36
34
0
23 Aug 2020
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
35
37
0
06 Jul 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
29
76
0
17 Jun 2020
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
40
23
0
20 May 2020
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
29
45
0
08 May 2020
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
45
77
0
20 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
37
78
0
10 Feb 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
45
27
0
25 Jan 2020
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
Trambak Banerjee
Qiang Liu
Gourab Mukherjee
Wengunag Sun
34
7
0
20 Oct 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
38
91
0
19 Jun 2019
A Kernel Loss for Solving the Bellman Equation
Yihao Feng
Lihong Li
Qiang Liu
30
70
0
25 May 2019
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
32
48
0
23 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
49
56
0
09 May 2019
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
44
37
0
27 Oct 2018
Signature moments to characterize laws of stochastic processes
I. Chevyrev
Harald Oberhauser
24
108
0
25 Oct 2018
High-dimensional Varying Index Coefficient Models via Stein's Identity
Sen Na
Zhuoran Yang
Zhaoran Wang
Mladen Kolar
29
21
0
16 Oct 2018
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
46
45
0
20 Jun 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
35
90
0
07 Jun 2018
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
38
45
0
07 Jun 2018
Sobolev Descent
Youssef Mroueh
Tom Sercu
Anant Raj
OT
26
1
0
30 May 2018
Fisher Efficient Inference of Intractable Models
Song Liu
Takafumi Kanamori
Wittawat Jitkrittum
Yu Chen
42
14
0
18 May 2018
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
26
101
0
27 Mar 2018
Characteristic and Universal Tensor Product Kernels
Z. Szabó
Bharath K. Sriperumbudur
41
72
0
28 Aug 2017
A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum
Wenkai Xu
Z. Szabó
Kenji Fukumizu
Arthur Gretton
31
103
0
22 May 2017
Gradient Estimators for Implicit Models
Yingzhen Li
Richard Turner
35
104
0
19 May 2017
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
36
272
0
25 Apr 2017
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
29
28
0
18 Apr 2017
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
223
0
06 Mar 2017
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
32
19
0
30 Nov 2016
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
43
116
0
21 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
26
1,074
0
16 Aug 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
68
476
0
10 Feb 2016
Measuring Sample Quality with Stein's Method
Jackson Gorham
Lester W. Mackey
62
223
0
09 Jun 2015
Previous
1
2