ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02964
  4. Cited By
A Kernel Test of Goodness of Fit

A Kernel Test of Goodness of Fit

9 February 2016
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
    BDL
ArXivPDFHTML

Papers citing "A Kernel Test of Goodness of Fit"

50 / 67 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
75
1
0
26 Apr 2025
Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Jiawei Zhang
Ziyuan Liu
Leon Yan
Gen Li
Yuantao Gu
54
0
0
13 Mar 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Stein Discrepancy for Unsupervised Domain Adaptation
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
89
0
0
24 Feb 2025
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Jiajun Luo
Trambak Banerjee
Gourab Mukherjee
Wenguang Sun
68
0
0
17 Feb 2025
Recurrent Neural Goodness-of-Fit Test for Time Series
Recurrent Neural Goodness-of-Fit Test for Time Series
Aoran Zhang
Wenbin Zhou
Liyan Xie
Shixiang Zhu
32
1
0
17 Oct 2024
Sequential Kernelized Stein Discrepancy
Sequential Kernelized Stein Discrepancy
Diego Martinez-Taboada
Aaditya Ramdas
35
0
0
26 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
41
5
0
06 Aug 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
41
1
0
12 Jun 2024
Diffusion Models for Generating Ballistic Spacecraft Trajectories
Diffusion Models for Generating Ballistic Spacecraft Trajectories
Tyler Presser
Agnimitra Dasgupta
Daniel Erwin
Assad A. Oberai
DiffM
34
3
0
20 May 2024
Mean-field underdamped Langevin dynamics and its spacetime
  discretization
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
32
4
0
26 Dec 2023
Spectral Regularized Kernel Goodness-of-Fit Tests
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
24
3
0
08 Aug 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle
  Stochastic Approximation
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
25
7
0
27 May 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
29
0
0
21 May 2023
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
24
7
0
01 Dec 2022
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient
  Descent
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
23
18
0
17 Nov 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
22
10
0
28 Oct 2022
MARS: Meta-Learning as Score Matching in the Function Space
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
23
4
0
24 Oct 2022
A kernel Stein test of goodness of fit for sequential models
A kernel Stein test of goodness of fit for sequential models
Jerome Baum
Heishiro Kanagawa
A. Gretton
18
9
0
19 Oct 2022
Variance-Aware Estimation of Kernel Mean Embedding
Variance-Aware Estimation of Kernel Mean Embedding
Geoffrey Wolfer
Pierre Alquier
19
4
0
13 Oct 2022
Auto-Encoding Goodness of Fit
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
27
1
0
12 Oct 2022
On RKHS Choices for Assessing Graph Generators via Kernel Stein
  Statistics
On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics
Moritz Weckbecker
Wenkai Xu
G. Reinert
47
3
0
11 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
40
14
0
26 Sep 2022
Learning to Increase the Power of Conditional Randomization Tests
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
24
2
0
03 Jul 2022
A Fourier representation of kernel Stein discrepancy with application to
  Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
George Wynne
Mikolaj Kasprzak
Andrew B. Duncan
25
4
0
09 Jun 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
F. A. Maken
Fabio Ramos
Lionel Ott
21
19
0
09 Feb 2022
Grassmann Stein Variational Gradient Descent
Grassmann Stein Variational Gradient Descent
Xingtu Liu
Harrison Zhu
Jean-François Ton
George Wynne
Andrew Duncan
21
12
0
07 Feb 2022
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
15
8
0
06 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
24
14
0
19 Nov 2021
A Computationally Efficient Method for Learning Exponential Family
  Distributions
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
20
9
0
28 Oct 2021
Generalized Kernel Thinning
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
36
29
0
04 Oct 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
23
2
0
13 Sep 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
14
153
0
25 Jul 2021
Interpreting diffusion score matching using normalizing flow
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
17
13
0
21 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
42
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
29
4
0
23 Jun 2021
Kernel Stein Discrepancy Descent
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
13
50
0
20 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
19
74
0
15 Apr 2021
Stein Variational Gradient Descent: many-particle and long-time
  asymptotics
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
16
22
0
25 Feb 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
14
19
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
101
184
0
12 Jan 2021
Testing for Normality with Neural Networks
Testing for Normality with Neural Networks
M. Simic
11
6
0
29 Sep 2020
Blindness of score-based methods to isolated components and mixing
  proportions
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
13
34
0
23 Aug 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
13
76
0
17 Jun 2020
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
22
23
0
20 May 2020
12
Next