ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02964
  4. Cited By
A Kernel Test of Goodness of Fit

A Kernel Test of Goodness of Fit

9 February 2016
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
    BDL
ArXivPDFHTML

Papers citing "A Kernel Test of Goodness of Fit"

50 / 95 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
90
1
0
26 Apr 2025
Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Jiawei Zhang
Ziyuan Liu
Leon Yan
Gen Li
Yuantao Gu
74
0
0
13 Mar 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
79
0
0
25 Feb 2025
Stein Discrepancy for Unsupervised Domain Adaptation
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
104
0
0
24 Feb 2025
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Jiajun Luo
Trambak Banerjee
Gourab Mukherjee
Wenguang Sun
83
0
0
17 Feb 2025
Recurrent Neural Goodness-of-Fit Test for Time Series
Recurrent Neural Goodness-of-Fit Test for Time Series
Aoran Zhang
Wenbin Zhou
Liyan Xie
Shixiang Zhu
45
1
0
17 Oct 2024
Sequential Kernelized Stein Discrepancy
Sequential Kernelized Stein Discrepancy
Diego Martinez-Taboada
Aaditya Ramdas
57
0
0
26 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
86
4
0
11 Aug 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
48
5
0
06 Aug 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
60
1
0
12 Jun 2024
Diffusion Models for Generating Ballistic Spacecraft Trajectories
Diffusion Models for Generating Ballistic Spacecraft Trajectories
Tyler Presser
Agnimitra Dasgupta
Daniel Erwin
Assad A. Oberai
DiffM
57
3
0
20 May 2024
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Mahtab Sarvmaili
Hassan Sajjad
Ga Wu
41
1
0
22 Mar 2024
Mean-field underdamped Langevin dynamics and its spacetime
  discretization
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
54
4
0
26 Dec 2023
CoCoGen: Physically-Consistent and Conditioned Score-based Generative
  Models for Forward and Inverse Problems
CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems
Christian L. Jacobsen
Yilin Zhuang
Karthik Duraisamy
AI4CE
SyDa
DiffM
44
19
0
16 Dec 2023
Spectral Regularized Kernel Goodness-of-Fit Tests
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
45
3
0
08 Aug 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle
  Stochastic Approximation
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
54
7
0
27 May 2023
Learning Rate Free Sampling in Constrained Domains
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
51
2
0
24 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational
  Gradient Descent
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
59
9
0
23 May 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
46
0
0
21 May 2023
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
53
7
0
01 Dec 2022
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
36
19
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient
  Descent
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
33
18
0
17 Nov 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
39
10
0
28 Oct 2022
MARS: Meta-Learning as Score Matching in the Function Space
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
55
4
0
24 Oct 2022
A kernel Stein test of goodness of fit for sequential models
A kernel Stein test of goodness of fit for sequential models
Jerome Baum
Heishiro Kanagawa
Arthur Gretton
46
9
0
19 Oct 2022
Variance-Aware Estimation of Kernel Mean Embedding
Variance-Aware Estimation of Kernel Mean Embedding
Geoffrey Wolfer
Pierre Alquier
40
4
0
13 Oct 2022
Auto-Encoding Goodness of Fit
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
51
1
0
12 Oct 2022
On RKHS Choices for Assessing Graph Generators via Kernel Stein
  Statistics
On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics
Moritz Weckbecker
Wenkai Xu
Gesine Reinert
55
3
0
11 Oct 2022
How good is your Laplace approximation of the Bayesian posterior?
  Finite-sample computable error bounds for a variety of useful divergences
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
38
4
0
29 Sep 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
68
14
0
26 Sep 2022
Learning to Increase the Power of Conditional Randomization Tests
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
45
2
0
03 Jul 2022
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal
  Reinforcement Learning
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal Reinforcement Learning
Nicolas Castanet
Sylvain Lamprier
Olivier Sigaud
25
3
0
14 Jun 2022
A Fourier representation of kernel Stein discrepancy with application to
  Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
George Wynne
Mikolaj Kasprzak
Andrew B. Duncan
41
4
0
09 Jun 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
68
8
0
16 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
43
25
0
20 Mar 2022
AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment
  of Implicit Graph Generators
AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators
Wenkai Xu
Gesine Reinert
42
4
0
07 Mar 2022
Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
F. A. Maken
Fabio Ramos
Lionel Ott
37
19
0
09 Feb 2022
Grassmann Stein Variational Gradient Descent
Grassmann Stein Variational Gradient Descent
Xingtu Liu
Harrison Zhu
Jean-François Ton
George Wynne
Andrew Duncan
51
12
0
07 Feb 2022
Kernel Two-Sample Tests in High Dimension: Interplay Between Moment
  Discrepancy and Dimension-and-Sample Orders
Kernel Two-Sample Tests in High Dimension: Interplay Between Moment Discrepancy and Dimension-and-Sample Orders
J. Yan
Xianyang Zhang
57
17
0
31 Dec 2021
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
40
8
0
06 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
43
14
0
19 Nov 2021
A Computationally Efficient Method for Learning Exponential Family
  Distributions
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
37
10
0
28 Oct 2021
MMD Aggregated Two-Sample Test
MMD Aggregated Two-Sample Test
Antonin Schrab
Ilmun Kim
Mélisande Albert
Béatrice Laurent
Benjamin Guedj
Arthur Gretton
40
56
0
28 Oct 2021
Generalized Kernel Thinning
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
45
29
0
04 Oct 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
54
2
0
13 Sep 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
37
154
0
25 Jul 2021
Interpreting diffusion score matching using normalizing flow
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
41
13
0
21 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
56
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
41
4
0
23 Jun 2021
A Convergence Theory for SVGD in the Population Limit under Talagrand's
  Inequality T1
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
33
20
0
06 Jun 2021
12
Next