ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02355
  4. Cited By
Hyperparameter optimization with approximate gradient

Hyperparameter optimization with approximate gradient

7 February 2016
Fabian Pedregosa
ArXivPDFHTML

Papers citing "Hyperparameter optimization with approximate gradient"

47 / 247 papers shown
Title
A Self-Tuning Actor-Critic Algorithm
A Self-Tuning Actor-Critic Algorithm
Tom Zahavy
Zhongwen Xu
Vivek Veeriah
Matteo Hessel
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
18
13
0
28 Feb 2020
Implicit differentiation of Lasso-type models for hyperparameter
  optimization
Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand
Quentin Klopfenstein
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
22
64
0
20 Feb 2020
Learning Adaptive Loss for Robust Learning with Noisy Labels
Learning Adaptive Loss for Robust Learning with Noisy Labels
Jun Shu
Qian Zhao
Keyu Chen
Zongben Xu
Deyu Meng
NoLa
OOD
19
23
0
16 Feb 2020
PHOTONAI -- A Python API for Rapid Machine Learning Model Development
PHOTONAI -- A Python API for Rapid Machine Learning Model Development
Ramona Leenings
N. Winter
Lucas Plagwitz
V. Holstein
J. Ernsting
...
N. Opel
Benjamin Risse
Xiaoyi Jiang
U. Dannlowski
Tim Hahn
LM&MA
37
28
0
13 Feb 2020
Super-efficiency of automatic differentiation for functions defined as a
  minimum
Super-efficiency of automatic differentiation for functions defined as a minimum
Pierre Ablin
Gabriel Peyré
Thomas Moreau
4
42
0
10 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
74
6,079
0
10 Dec 2019
Meta Label Correction for Noisy Label Learning
Meta Label Correction for Noisy Label Learning
Guoqing Zheng
Ahmed Hassan Awadallah
S. Dumais
NoLa
OffRL
24
178
0
10 Nov 2019
Penalty Method for Inversion-Free Deep Bilevel Optimization
Penalty Method for Inversion-Free Deep Bilevel Optimization
Akshay Mehra
Jihun Hamm
24
45
0
08 Nov 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
27
402
0
06 Nov 2019
AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI
  Systems
AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems
James Ferlez
Yasser Shoukry
9
17
0
05 Nov 2019
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
Michele Donini
Luca Franceschi
Massimiliano Pontil
Orchid Majumder
P. Frasconi
17
7
0
18 Oct 2019
Gradient Descent: The Ultimate Optimizer
Gradient Descent: The Ultimate Optimizer
Kartik Chandra
Audrey Xie
Jonathan Ragan-Kelley
E. Meijer
ODL
20
0
0
29 Sep 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
29
54
0
27 Sep 2019
Understanding and Robustifying Differentiable Architecture Search
Understanding and Robustifying Differentiable Architecture Search
Arber Zela
T. Elsken
Tonmoy Saikia
Yassine Marrakchi
Thomas Brox
Frank Hutter
OOD
AAML
66
366
0
20 Sep 2019
Modular Meta-Learning with Shrinkage
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
23
35
0
12 Sep 2019
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
19
844
0
10 Sep 2019
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with
  Meta-Learning
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
Zhijun Mai
Guosheng Hu
Dexiong Chen
Fumin Shen
Heng Tao Shen
22
41
0
27 Aug 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
20
1,420
0
02 Aug 2019
Learning Effective Loss Functions Efficiently
Learning Effective Loss Functions Efficiently
Matthew J. Streeter
6
8
0
28 Jun 2019
Graduated Optimization of Black-Box Functions
Graduated Optimization of Black-Box Functions
Weijia Shao
C. Geißler
F. Sivrikaya
11
2
0
04 Jun 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Forecasting in Big Data Environments: an Adaptable and Automated
  Shrinkage Estimation of Neural Networks (AAShNet)
Forecasting in Big Data Environments: an Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)
Ali Habibnia
E. Maasoumi
18
5
0
25 Apr 2019
Least Squares Auto-Tuning
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Learning Optimal Linear Regularizers
Learning Optimal Linear Regularizers
Matthew J. Streeter
6
8
0
19 Feb 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Parallel Contextual Bandits in Wireless Handover Optimization
Parallel Contextual Bandits in Wireless Handover Optimization
Igor Colin
Albert Thomas
M. Draief
18
5
0
21 Jan 2019
Dataset Distillation
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
11
291
0
27 Nov 2018
Using Known Information to Accelerate HyperParameters Optimization Based
  on SMBO
Using Known Information to Accelerate HyperParameters Optimization Based on SMBO
Daning Cheng
Hanping Zhang
Xia Fen
Shigang Li
Yunquan Zhang
14
0
0
08 Nov 2018
Efficient Online Hyperparameter Optimization for Kernel Ridge Regression
  with Applications to Traffic Time Series Prediction
Efficient Online Hyperparameter Optimization for Kernel Ridge Regression with Applications to Traffic Time Series Prediction
Hongyuan Zhan
G. Gomes
Xin Li
Kamesh Madduri
Kesheng Wu
9
6
0
01 Nov 2018
Automated Machine Learning: From Principles to Practices
Automated Machine Learning: From Principles to Practices
Quanming Yao
Mengshuo Wang
Hugo Jair Escalante
Huan Zhao
Qiang Yang
22
257
0
31 Oct 2018
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
36
262
0
25 Oct 2018
Safe Grid Search with Optimal Complexity
Safe Grid Search with Optimal Complexity
Eugène Ndiaye
Tam Le
Olivier Fercoq
Joseph Salmon
Ichiro Takeuchi
35
45
0
12 Oct 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
82
4,301
0
24 Jun 2018
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization
  and Meta-Learning
Far-HO: A Bilevel Programming Package for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
P. Frasconi
17
2
0
13 Jun 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
717
0
13 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
24
130
0
30 May 2018
Meta-Gradient Reinforcement Learning
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
38
324
0
24 May 2018
Neural Generative Models for Global Optimization with Gradients
Neural Generative Models for Global Optimization with Gradients
Louis Faury
Flavian Vasile
Clément Calauzènes
Olivier Fercoq
6
2
0
22 May 2018
Optimizing for Generalization in Machine Learning with Cross-Validation
  Gradients
Optimizing for Generalization in Machine Learning with Cross-Validation Gradients
Shane T. Barratt
Rishi Sharma
14
7
0
18 May 2018
MLtuner: System Support for Automatic Machine Learning Tuning
MLtuner: System Support for Automatic Machine Learning Tuning
Henggang Cui
G. Ganger
Phillip B. Gibbons
14
6
0
20 Mar 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
41
139
0
26 Feb 2018
A Bridge Between Hyperparameter Optimization and Learning-to-learn
A Bridge Between Hyperparameter Optimization and Learning-to-learn
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
35
20
0
18 Dec 2017
Towards Poisoning of Deep Learning Algorithms with Back-gradient
  Optimization
Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization
Luis Muñoz-González
Battista Biggio
Ambra Demontis
Andrea Paudice
Vasin Wongrassamee
Emil C. Lupu
Fabio Roli
AAML
13
624
0
29 Aug 2017
Discretization-free Knowledge Gradient Methods for Bayesian Optimization
Jian Wu
P. Frazier
BDL
13
9
0
20 Jul 2017
Bayesian Optimization with Gradients
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
21
209
0
13 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
133
409
0
06 Mar 2017
Previous
12345