ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08525
17
7

MARTHE: Scheduling the Learning Rate Via Online Hypergradients

18 October 2019
Michele Donini
Luca Franceschi
Massimiliano Pontil
Orchid Majumder
P. Frasconi
ArXivPDFHTML
Abstract

We study the problem of fitting task-specific learning rate schedules from the perspective of hyperparameter optimization, aiming at good generalization. We describe the structure of the gradient of a validation error w.r.t. the learning rate schedule -- the hypergradient. Based on this, we introduce MARTHE, a novel online algorithm guided by cheap approximations of the hypergradient that uses past information from the optimization trajectory to simulate future behaviour. It interpolates between two recent techniques, RTHO (Franceschi et al., 2017) and HD (Baydin et al. 2018), and is able to produce learning rate schedules that are more stable leading to models that generalize better.

View on arXiv
Comments on this paper