ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02386
  4. Cited By
Hierarchical Variational Models

Hierarchical Variational Models

7 November 2015
Rajesh Ranganath
Dustin Tran
David M. Blei
    DRL
    VLM
ArXivPDFHTML

Papers citing "Hierarchical Variational Models"

50 / 78 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
40
1
0
05 Jan 2024
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Peiyu Yu
Y. Zhu
Sirui Xie
Xiaojian Ma
Ruiqi Gao
Song-Chun Zhu
Ying Nian Wu
DiffM
29
12
0
05 Oct 2023
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Vy Vo
Trung Le
L. Vuong
He Zhao
Edwin V. Bonilla
Dinh Q. Phung
OT
21
4
0
25 May 2023
Where to Diffuse, How to Diffuse, and How to Get Back: Automated
  Learning for Multivariate Diffusions
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
36
21
0
14 Feb 2023
Predictive World Models from Real-World Partial Observations
Predictive World Models from Real-World Partial Observations
Robin Karlsson
Alexander Carballo
Keisuke Fujii
Kento Ohtani
K. Takeda
35
5
0
12 Jan 2023
Constraining cosmological parameters from N-body simulations with
  Variational Bayesian Neural Networks
Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural Networks
Héctor J. Hortúa
L. '. García
Leonardo Castañeda C.
BDL
24
4
0
09 Jan 2023
$β$-Multivariational Autoencoder for Entangled Representation
  Learning in Video Frames
βββ-Multivariational Autoencoder for Entangled Representation Learning in Video Frames
F. Nouri
R. Bergevin
16
0
0
22 Nov 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Unifying Generative Models with GFlowNets and Beyond
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDL
AI4CE
54
25
0
06 Sep 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Efficient-VDVAE: Less is more
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
26
28
0
25 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
24
8
0
10 Nov 2021
Probabilistic Autoencoder using Fisher Information
Probabilistic Autoencoder using Fisher Information
J. Zacherl
Philipp Frank
T. Ensslin
EgoV
AI4CE
33
2
0
28 Oct 2021
Relay Variational Inference: A Method for Accelerated Encoderless VI
Relay Variational Inference: A Method for Accelerated Encoderless VI
Amir Zadeh
Santiago Benoit
Louis-Philippe Morency
DRL
17
1
0
26 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
32
22
0
22 Oct 2021
Variational Predictive Routing with Nested Subjective Timescales
Variational Predictive Routing with Nested Subjective Timescales
Alexey Zakharov
Qinghai Guo
Z. Fountas
BDL
AI4TS
43
9
0
21 Oct 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Black Box Variational Bayesian Model Averaging
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
24
3
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
36
2
0
23 Jun 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial
  Attacks
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
36
10
0
10 Mar 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
26
11
0
16 Dec 2020
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
29
8
0
15 Dec 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Uncertainty in Neural Processes
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank Wood
UQCV
BDL
AI4CE
11
4
0
08 Oct 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Capturing Label Characteristics in VAEs
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Philip Torr
N. Siddharth
Tom Rainforth
CML
DRL
30
43
0
17 Jun 2020
An Overview of Deep Semi-Supervised Learning
An Overview of Deep Semi-Supervised Learning
Yassine Ouali
C´eline Hudelot
Myriam Tami
SSL
HAI
27
294
0
09 Jun 2020
Infinite-dimensional gradient-based descent for alpha-divergence
  minimisation
Infinite-dimensional gradient-based descent for alpha-divergence minimisation
Kamélia Daudel
Randal Douc
Franccois Portier
21
17
0
20 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
16
19
0
30 Oct 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
21
15
0
09 Sep 2019
General Control Functions for Causal Effect Estimation from Instrumental
  Variables
General Control Functions for Causal Effect Estimation from Instrumental Variables
A. Puli
Rajesh Ranganath
CML
21
4
0
08 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
24
113
0
24 Jun 2019
Variational Inference for Graph Convolutional Networks in the Absence of
  Graph Data and Adversarial Settings
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
P. Elinas
Edwin V. Bonilla
Louis C. Tiao
BDL
GNN
26
10
0
05 Jun 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
Improved Conditional VRNNs for Video Prediction
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGen
DRL
21
161
0
27 Apr 2019
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial
  Examples in a Noiseless Setting
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
20
14
0
29 Nov 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial
  VAE
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE
Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
16
127
0
28 Sep 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
12
Next