Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02386
Cited By
Hierarchical Variational Models
7 November 2015
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hierarchical Variational Models"
50 / 78 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
40
1
0
05 Jan 2024
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Peiyu Yu
Y. Zhu
Sirui Xie
Xiaojian Ma
Ruiqi Gao
Song-Chun Zhu
Ying Nian Wu
DiffM
29
12
0
05 Oct 2023
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Vy Vo
Trung Le
L. Vuong
He Zhao
Edwin V. Bonilla
Dinh Q. Phung
OT
21
4
0
25 May 2023
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
33
21
0
14 Feb 2023
Predictive World Models from Real-World Partial Observations
Robin Karlsson
Alexander Carballo
Keisuke Fujii
Kento Ohtani
K. Takeda
35
5
0
12 Jan 2023
Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural Networks
Héctor J. Hortúa
L. '. García
Leonardo Castañeda C.
BDL
24
4
0
09 Jan 2023
β
β
β
-Multivariational Autoencoder for Entangled Representation Learning in Video Frames
F. Nouri
R. Bergevin
16
0
0
22 Nov 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDL
AI4CE
54
25
0
06 Sep 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
26
28
0
25 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
21
8
0
10 Nov 2021
Probabilistic Autoencoder using Fisher Information
J. Zacherl
Philipp Frank
T. Ensslin
EgoV
AI4CE
33
2
0
28 Oct 2021
Relay Variational Inference: A Method for Accelerated Encoderless VI
Amir Zadeh
Santiago Benoit
Louis-Philippe Morency
DRL
17
1
0
26 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
32
22
0
22 Oct 2021
Variational Predictive Routing with Nested Subjective Timescales
Alexey Zakharov
Qinghai Guo
Z. Fountas
BDL
AI4TS
43
9
0
21 Oct 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
24
3
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
36
2
0
23 Jun 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
36
10
0
10 Mar 2021
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
26
11
0
16 Dec 2020
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
29
8
0
15 Dec 2020
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank Wood
UQCV
BDL
AI4CE
11
4
0
08 Oct 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Philip Torr
N. Siddharth
Tom Rainforth
CML
DRL
30
43
0
17 Jun 2020
An Overview of Deep Semi-Supervised Learning
Yassine Ouali
C´eline Hudelot
Myriam Tami
SSL
HAI
27
294
0
09 Jun 2020
Infinite-dimensional gradient-based descent for alpha-divergence minimisation
Kamélia Daudel
Randal Douc
Franccois Portier
21
17
0
20 May 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
16
19
0
30 Oct 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
21
15
0
09 Sep 2019
General Control Functions for Causal Effect Estimation from Instrumental Variables
A. Puli
Rajesh Ranganath
CML
21
4
0
08 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
24
113
0
24 Jun 2019
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
P. Elinas
Edwin V. Bonilla
Louis C. Tiao
BDL
GNN
26
10
0
05 Jun 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGen
DRL
21
161
0
27 Apr 2019
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
20
14
0
29 Nov 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE
Chao Ma
Sebastian Tschiatschek
Konstantina Palla
José Miguel Hernández-Lobato
Sebastian Nowozin
Cheng Zhang
16
127
0
28 Sep 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
1
2
Next