Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.00830
Cited By
The Variational Fair Autoencoder
3 November 2015
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Variational Fair Autoencoder"
50 / 154 papers shown
Title
MADAN: Multi-source Adversarial Domain Aggregation Network for Domain Adaptation
Sicheng Zhao
Bo-wen Li
Xiangyu Yue
Pengfei Xu
Kurt Keutzer
OOD
46
64
0
19 Feb 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
33
386
0
21 Jan 2020
Multi-Source Domain Adaptation for Text Classification via DistanceNet-Bandits
Han Guo
Ramakanth Pasunuru
Joey Tianyi Zhou
30
114
0
13 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Estimation of Orientation and Camera Parameters from Cryo-Electron Microscopy Images with Variational Autoencoders and Generative Adversarial Networks
Nina Miolane
Frédéric Poitevin
Yee-Ting Li
S. Holmes
3DV
16
23
0
19 Nov 2019
Fairness With Minimal Harm: A Pareto-Optimal Approach For Healthcare
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
11
25
0
16 Nov 2019
Multi-source Domain Adaptation for Semantic Segmentation
Sicheng Zhao
Bo-wen Li
Xiangyu Yue
Yang Gu
Pengfei Xu
Runbo Hu
Hua Chai
Kurt Keutzer
32
159
0
27 Oct 2019
Fair Generative Modeling via Weak Supervision
Kristy Choi
Aditya Grover
Trisha Singh
Rui Shu
Stefano Ermon
36
133
0
26 Oct 2019
On the Global Optima of Kernelized Adversarial Representation Learning
Bashir Sadeghi
Runyi Yu
Vishnu Boddeti
AAML
67
31
0
16 Oct 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
22
106
0
16 Oct 2019
Conditional out-of-sample generation for unpaired data using trVAE
M. Lotfollahi
Mohsen Naghipourfar
Fabian J. Theis
F. A. Wolf
GAN
ViT
DRL
22
19
0
04 Oct 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
341
4,230
0
23 Aug 2019
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
33
173
0
28 Jul 2019
Rényi Fair Inference
Sina Baharlouei
Maher Nouiehed
Ahmad Beirami
Meisam Razaviyayn
FaML
24
66
0
28 Jun 2019
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
27
25
0
27 Jun 2019
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
37
19
0
25 Jun 2019
Transfer of Machine Learning Fairness across Domains
Candice Schumann
Xuezhi Wang
Alex Beutel
Jilin Chen
Hai Qian
Ed H. Chi
35
69
0
24 Jun 2019
Fair Division Without Disparate Impact
A. Peysakhovich
Christian Kroer
30
10
0
06 Jun 2019
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
Laurens van der Maaten
45
262
0
06 Jun 2019
The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at Data Analysis
Cynthia Rudin
David Carlson
HAI
30
34
0
04 Jun 2019
DualDis: Dual-Branch Disentangling with Adversarial Learning
Thomas Robert
Nicolas Thome
Matthieu Cord
CoGe
DRL
30
4
0
03 Jun 2019
Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
Nathan Kallus
Xiaojie Mao
Angela Zhou
FaML
24
155
0
01 Jun 2019
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
19
148
0
28 May 2019
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
33
198
0
24 May 2019
Fairness in Recommendation Ranking through Pairwise Comparisons
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
...
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H. Chi
Cristos Goodrow
FaML
36
373
0
02 Mar 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
30
150
0
14 Jan 2019
Unsupervised learning with contrastive latent variable models
Kristen A. Severson
S. Ghosh
Kenney Ng
SSL
DRL
27
38
0
14 Nov 2018
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
34
618
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
33
166
0
01 Nov 2018
Counterfactual Fairness in Text Classification through Robustness
Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H. Chi
Alex Beutel
22
258
0
27 Sep 2018
Adversarial Removal of Demographic Attributes from Text Data
Yanai Elazar
Yoav Goldberg
FaML
13
304
0
20 Aug 2018
Learning disentangled representation from 12-lead electrograms: application in localizing the origin of Ventricular Tachycardia
P. Gyawali
B. Horácek
J. Sapp
Linwei Wang
38
3
0
04 Aug 2018
Hierarchical VampPrior Variational Fair Auto-Encoder
P. Botros
Jakub M. Tomczak
DRL
15
7
0
26 Jun 2018
What About Applied Fairness?
Jared Sylvester
Edward Raff
FaML
14
10
0
13 Jun 2018
iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making
Preethi Lahoti
Krishna P. Gummadi
Gerhard Weikum
FaML
20
166
0
04 Jun 2018
FairGAN: Fairness-aware Generative Adversarial Networks
Depeng Xu
Shuhan Yuan
Lu Zhang
Xintao Wu
GAN
33
306
0
28 May 2018
Invariant Representations without Adversarial Training
Daniel Moyer
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
OOD
15
208
0
24 May 2018
A Universal Music Translation Network
Noam Mor
Lior Wolf
Adam Polyak
Yaniv Taigman
25
110
0
21 May 2018
Causal Reasoning for Algorithmic Fairness
Joshua R. Loftus
Chris Russell
Matt J. Kusner
Ricardo M. A. Silva
FaML
CML
18
125
0
15 May 2018
Unsupervised Domain Adaptation with Adversarial Residual Transform Networks
Guanyu Cai
Yuqin Wang
Mengchu Zhou
Lianghua He
GAN
19
88
0
25 Apr 2018
Strong Baselines for Neural Semi-supervised Learning under Domain Shift
Sebastian Ruder
Barbara Plank
17
171
0
25 Apr 2018
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
33
296
0
28 Mar 2018
Learning from Noisy Web Data with Category-level Supervision
Li Niu
Qingtao Tang
Ashok Veeraraghavan
A. Sabharwal
NoLa
30
32
0
10 Mar 2018
Path-Specific Counterfactual Fairness
Silvia Chiappa
Thomas P. S. Gillam
CML
FaML
40
334
0
22 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
675
0
17 Feb 2018
Fairness in Supervised Learning: An Information Theoretic Approach
AmirEmad Ghassami
S. Khodadadian
Negar Kiyavash
FaML
9
48
0
13 Jan 2018
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
Alex Beutel
Jilin Chen
Zhe Zhao
Ed H. Chi
FaML
19
441
0
01 Jul 2017
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
69
731
0
24 May 2017
Counterfactual Fairness
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
FaML
20
1,558
0
20 Mar 2017
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
Werner Zellinger
Thomas Grubinger
E. Lughofer
T. Natschläger
Susanne Saminger-Platz
OOD
21
563
0
28 Feb 2017
Previous
1
2
3
4
Next