Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.00830
Cited By
The Variational Fair Autoencoder
3 November 2015
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Variational Fair Autoencoder"
50 / 153 papers shown
Title
Kernel Two-Sample Tests in High Dimension: Interplay Between Moment Discrepancy and Dimension-and-Sample Orders
J. Yan
Xianyang Zhang
52
17
0
31 Dec 2021
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev
Anian Ruoss
Mislav Balunović
Maximilian Baader
Martin Vechev
FaML
36
19
0
26 Nov 2021
Learning Conditional Invariance through Cycle Consistency
M. Samarin
V. Nesterov
Mario Wieser
Aleksander Wieczorek
S. Parbhoo
Volker Roth
41
3
0
25 Nov 2021
Learning Domain Invariant Representations in Goal-conditioned Block MDPs
Beining Han
Chongyi Zheng
Harris Chan
Keiran Paster
Michael Ruogu Zhang
Jimmy Ba
OOD
AI4CE
20
13
0
27 Oct 2021
Fairness-Driven Private Collaborative Machine Learning
Dana Pessach
Tamir Tassa
E. Shmueli
FedML
33
7
0
29 Sep 2021
Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models
Yunhan Zheng
Shenhao Wang
Jinhuan Zhao
HAI
24
27
0
25 Sep 2021
Fairness-aware Class Imbalanced Learning
Shivashankar Subramanian
Afshin Rahimi
Timothy Baldwin
Trevor Cohn
Lea Frermann
FaML
109
28
0
21 Sep 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Boddeti
37
5
0
12 Sep 2021
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
37
20
0
01 Sep 2021
Addressing Algorithmic Disparity and Performance Inconsistency in Federated Learning
Sen Cui
Weishen Pan
Jian Liang
Changshui Zhang
Fei Wang
FedML
20
84
0
19 Aug 2021
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks
Yushun Dong
Ninghao Liu
B. Jalaeian
Jundong Li
31
118
0
11 Aug 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
Projection-wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis
Xianjing Liu
Bo-wen Li
Esther E. Bron
W. Niessen
E. Wolvius
Gennady Roshchupkin
CVBM
32
9
0
25 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
45
19
0
17 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
22
36
0
10 Jun 2021
An Information-theoretic Approach to Distribution Shifts
Marco Federici
Ryota Tomioka
Patrick Forré
OOD
44
17
0
07 Jun 2021
Fair Representations by Compression
Xavier Gitiaux
Huzefa Rangwala
FaML
30
14
0
28 May 2021
Fair Feature Distillation for Visual Recognition
S. Jung
Donggyu Lee
Taeeon Park
Taesup Moon
27
75
0
27 May 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
29
39
0
09 May 2021
AI Fairness via Domain Adaptation
Neil J. Joshi
Philippe Burlina
29
15
0
15 Mar 2021
Fair Mixup: Fairness via Interpolation
Ching-Yao Chuang
Youssef Mroueh
21
138
0
11 Mar 2021
Fairness in TabNet Model by Disentangled Representation for the Prediction of Hospital No-Show
Sabri Boughorbel
Fethi Jarray
A. Kadri
OOD
30
6
0
06 Mar 2021
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
27
25
0
24 Feb 2021
Learning Invariant Representations using Inverse Contrastive Loss
A. K. Akash
Vishnu Suresh Lokhande
Sathya Ravi
Vikas Singh
SSL
21
8
0
16 Feb 2021
Through the Data Management Lens: Experimental Analysis and Evaluation of Fair Classification
Maliha Tashfia Islam
Anna Fariha
A. Meliou
Babak Salimi
FaML
30
25
0
18 Jan 2021
Multi-type Disentanglement without Adversarial Training
Lei Sha
Thomas Lukasiewicz
DRL
49
12
0
16 Dec 2020
Improving the Fairness of Deep Generative Models without Retraining
Shuhan Tan
Yujun Shen
Bolei Zhou
183
59
0
09 Dec 2020
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO Approximations
H. Feng
Kezhi Kong
Minghao Chen
Tianye Zhang
Minfeng Zhu
Wei Chen
VLM
DRL
42
24
0
21 Nov 2020
Fairness in Biometrics: a figure of merit to assess biometric verification systems
Tiago de Freitas Pereira
S´ebastien Marcel
24
62
0
04 Nov 2020
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
25
188
0
03 Nov 2020
THIN: THrowable Information Networks and Application for Facial Expression Recognition In The Wild
Estèphe Arnaud
Arnaud Dapogny
Kévin Bailly
CVBM
29
23
0
15 Oct 2020
Tackling unsupervised multi-source domain adaptation with optimism and consistency
Diogo Pernes
Jaime S. Cardoso
29
8
0
29 Sep 2020
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
FaML
29
49
0
25 Sep 2020
Attribute Privacy: Framework and Mechanisms
Wanrong Zhang
O. Ohrimenko
Rachel Cummings
18
36
0
08 Sep 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
16
241
0
03 Sep 2020
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
24
84
0
20 Aug 2020
Beyond
H
\mathcal{H}
H
-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
38
22
0
30 Jul 2020
Fairness-Aware Online Personalization
G. R. Lal
S. Geyik
K. Kenthapadi
FaML
8
3
0
30 Jul 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
19
29
0
20 Jun 2020
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
16
57
0
18 Jun 2020
PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models
Eyal Ben-David
Carmel Rabinovitz
Roi Reichart
SSL
58
61
0
16 Jun 2020
Disentanglement for Discriminative Visual Recognition
Xiaofeng Liu
DRL
27
6
0
14 Jun 2020
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning
Pieter Delobelle
Paul Temple
Gilles Perrouin
Benoit Frénay
P. Heymans
Bettina Berendt
AAML
FaML
24
14
0
14 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
38
7
0
12 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Fairness by Learning Orthogonal Disentangled Representations
Mhd Hasan Sarhan
Nassir Navab
Abouzar Eslami
Shadi Albarqouni
FaML
OOD
CML
19
96
0
12 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
Previous
1
2
3
4
Next