ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.02451
  4. Cited By
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method

The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method

8 October 2015
Alexandre Bouchard-Coté
Sebastian J. Vollmer
Arnaud Doucet
ArXivPDFHTML

Papers citing "The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method"

50 / 120 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Jimmy Huy Tran
T. S. Kleppe
BDL
45
0
0
25 Apr 2025
Fused $L_{1/2}$ prior for large scale linear inverse problem with Gibbs
  bouncy particle sampler
Fused L1/2L_{1/2}L1/2​ prior for large scale linear inverse problem with Gibbs bouncy particle sampler
Xiongwen Ke
Yanan Fan
Qingping Zhou
19
0
0
12 Sep 2024
Adaptive Stereographic MCMC
Adaptive Stereographic MCMC
Cameron Bell
Krzystof Łatuszyński
Gareth O. Roberts
27
0
0
21 Aug 2024
Piecewise deterministic generative models
Piecewise deterministic generative models
Andrea Bertazzi
Alain Durmus
Dario Shariatian
Umut Simsekli
Éric Moulines
DiffM
27
0
0
28 Jul 2024
Stochastic Gradient Piecewise Deterministic Monte Carlo Samplers
Stochastic Gradient Piecewise Deterministic Monte Carlo Samplers
Paul Fearnhead
Sebastiano Grazzi
Chris Nemeth
Gareth O. Roberts
25
0
0
27 Jun 2024
Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in
  Non-Convex Optimization via Stationary Distribution
Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution
Naoki Yoshida
Shogo H. Nakakita
Masaaki Imaizumi
24
1
0
23 Jun 2024
Hoeffding's inequality for continuous-time Markov chains
Hoeffding's inequality for continuous-time Markov chains
Jinpeng Liu
Yuanyuan Liu
Lin Zhou
18
0
0
23 Apr 2024
Non-reversible lifts of reversible diffusion processes and relaxation
  times
Non-reversible lifts of reversible diffusion processes and relaxation times
Andreas Eberle
Francis Lörler
32
8
0
07 Feb 2024
Ensemble-Based Annealed Importance Sampling
Ensemble-Based Annealed Importance Sampling
Haoxuan Chen
Lexing Ying
33
2
0
28 Jan 2024
Neural parameter calibration and uncertainty quantification for epidemic
  forecasting
Neural parameter calibration and uncertainty quantification for epidemic forecasting
Thomas Gaskin
Tim Conrad
G. Pavliotis
Christof Schütte
25
1
0
05 Dec 2023
Debiasing Piecewise Deterministic Markov Process samplers using
  couplings
Debiasing Piecewise Deterministic Markov Process samplers using couplings
Adrien Corenflos
Matthew Sutton
Nicolas Chopin
19
1
0
27 Jun 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
T. Pock
39
4
0
25 May 2023
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
J. Bierkens
K. Kamatani
Gareth O. Roberts
13
0
0
01 May 2023
Methods and applications of PDMP samplers with boundary conditions
Methods and applications of PDMP samplers with boundary conditions
J. Bierkens
Sebastiano Grazzi
Gareth O. Roberts
Moritz Schauer
21
7
0
14 Mar 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
20
0
0
17 Feb 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
23
0
0
18 Dec 2022
Birth-death dynamics for sampling: Global convergence, approximations
  and their asymptotics
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
32
22
0
01 Nov 2022
Federated Bayesian Computation via Piecewise Deterministic Markov
  Processes
Federated Bayesian Computation via Piecewise Deterministic Markov Processes
J. Bierkens
Andrew Duncan
FedML
11
1
0
25 Oct 2022
Sampling using Adaptive Regenerative Processes
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
19
1
0
18 Oct 2022
Adaptive importance sampling based on fault tree analysis for piecewise
  deterministic Markov process
Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process
G. Chennetier
Hassane Chraïbi
A. Dutfoy
Josselin Garnier
22
2
0
17 Sep 2022
On free energy barriers in Gaussian priors and failure of cold start
  MCMC for high-dimensional unimodal distributions
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
12
8
0
05 Sep 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
13
6
0
09 Aug 2022
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Tim Tsz-Kit Lau
Han Liu
56
7
0
10 Jul 2022
Automatic Zig-Zag sampling in practice
Automatic Zig-Zag sampling in practice
Alice Corbella
S. Spencer
Gareth O. Roberts
10
20
0
22 Jun 2022
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
P. Whalley
Daniel Paulin
B. Leimkuhler
6
4
0
09 Jun 2022
Stereographic Markov Chain Monte Carlo
Stereographic Markov Chain Monte Carlo
Jun Yang
K. Latuszyñski
Gareth O. Roberts
33
13
0
24 May 2022
Continuously-Tempered PDMP Samplers
Continuously-Tempered PDMP Samplers
Matthew Sutton
R. Salomone
Augustin Chevallier
Paul Fearnhead
16
1
0
19 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Efficient computation of the volume of a polytope in high-dimensions
  using Piecewise Deterministic Markov Processes
Efficient computation of the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Augustin Chevallier
F. Cazals
Paul Fearnhead
9
13
0
18 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
20
10
0
02 Feb 2022
Accelerating Bayesian inference of dependency between complex biological
  traits
Accelerating Bayesian inference of dependency between complex biological traits
Zhenyu Zhang
A. Nishimura
Nídia S. Trovão
Joshua L. Cherry
Andrew J Holbrook
Xiang Ji
P. Lemey
M. Suchard
15
2
0
18 Jan 2022
Optimal friction matrix for underdamped Langevin sampling
Optimal friction matrix for underdamped Langevin sampling
Martin Chak
N. Kantas
T. Lelièvre
G. Pavliotis
9
8
0
30 Nov 2021
Strong Invariance Principles for Ergodic Markov Processes
Strong Invariance Principles for Ergodic Markov Processes
A. Pengel
J. Bierkens
14
1
0
24 Nov 2021
The Application of Zig-Zag Sampler in Sequential Markov Chain Monte
  Carlo
The Application of Zig-Zag Sampler in Sequential Markov Chain Monte Carlo
Yu Han
Kazuyuki Nakamura
17
2
0
18 Nov 2021
Sampling from multimodal distributions using tempered Hamiltonian
  transitions
Sampling from multimodal distributions using tempered Hamiltonian transitions
Joonha Park
12
2
0
12 Nov 2021
PDMP Monte Carlo methods for piecewise-smooth densities
PDMP Monte Carlo methods for piecewise-smooth densities
Augustin Chevallier
Samuel Power
Andi Q. Wang
Paul Fearnhead
21
11
0
10 Nov 2021
Divide-and-Conquer Fusion
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
19
2
0
14 Oct 2021
Massively Parallel Probabilistic Computing with Sparse Ising Machines
Massively Parallel Probabilistic Computing with Sparse Ising Machines
Navid Anjum Aadit
Andrea Grimaldi
M. Carpentieri
L. Theogarajan
J. Martinis
G. Finocchio
Kerem Y Çamsarı
50
141
0
06 Oct 2021
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Jiayuan Zhou
Kshitij Khare
Sanvesh Srivastava
27
3
0
18 Sep 2021
A stepped sampling method for video detection using LSTM
A stepped sampling method for video detection using LSTM
Dengshan Li
Rujing Wang
Chengjun Xie
11
0
0
18 Jul 2021
Convergence Analysis of Schr{ö}dinger-F{ö}llmer Sampler without
  Convexity
Convergence Analysis of Schr{ö}dinger-F{ö}llmer Sampler without Convexity
Yuling Jiao
Lican Kang
Yanyan Liu
Youzhou Zhou
OT
6
6
0
10 Jul 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
29
27
0
21 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
25
9
0
30 May 2021
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Quan Zhou
Jun Yang
Dootika Vats
Gareth O. Roberts
Jeffrey S. Rosenthal
15
24
0
12 May 2021
Speed Up Zig-Zag
Speed Up Zig-Zag
G. Vasdekis
Gareth O. Roberts
11
11
0
30 Mar 2021
Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With
  Non-Differentiable Priors
Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With Non-Differentiable Priors
Jacob Vorstrup Goldman
Torben Sell
Sumeetpal S. Singh
6
7
0
16 Mar 2021
Sticky PDMP samplers for sparse and local inference problems
Sticky PDMP samplers for sparse and local inference problems
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
6
15
0
15 Mar 2021
Spatiotemporal blocking of the bouncy particle sampler for efficient
  inference in state space models
Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state space models
Jacob Vorstrup Goldman
Sumeetpal S. Singh
11
4
0
08 Jan 2021
123
Next