ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07874
19
0

Fused L1/2L_{1/2}L1/2​ prior for large scale linear inverse problem with Gibbs bouncy particle sampler

12 September 2024
Xiongwen Ke
Yanan Fan
Qingping Zhou
ArXivPDFHTML
Abstract

In this paper, we study Bayesian approach for solving large scale linear inverse problems arising in various scientific and engineering fields. We propose a fused L1/2L_{1/2}L1/2​ prior with edge-preserving and sparsity-promoting properties and show that it can be formulated as a Gaussian mixture Markov random field. Since the density function of this family of prior is neither log-concave nor Lipschitz, gradient-based Markov chain Monte Carlo methods can not be applied to sample the posterior. Thus, we present a Gibbs sampler in which all the conditional posteriors involved have closed form expressions. The Gibbs sampler works well for small size problems but it is computationally intractable for large scale problems due to the need for sample high dimensional Gaussian distribution. To reduce the computation burden, we construct a Gibbs bouncy particle sampler (Gibbs-BPS) based on a piecewise deterministic Markov process. This new sampler combines elements of Gibbs sampler with bouncy particle sampler and its computation complexity is an order of magnitude smaller. We show that the new sampler converges to the target distribution. With computed tomography examples, we demonstrate that the proposed method shows competitive performance with existing popular Bayesian methods and is highly efficient in large scale problems.

View on arXiv
Comments on this paper