ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02481
50
141

Massively Parallel Probabilistic Computing with Sparse Ising Machines

6 October 2021
Navid Anjum Aadit
Andrea Grimaldi
M. Carpentieri
L. Theogarajan
J. Martinis
G. Finocchio
Kerem Y Çamsarı
ArXivPDFHTML
Abstract

Inspired by the developments in quantum computing, building domain-specific classical hardware to solve computationally hard problems has received increasing attention. Here, by introducing systematic sparsification techniques, we demonstrate a massively parallel architecture: the sparse Ising Machine (sIM). Exploiting sparsity, sIM achieves ideal parallelism: its key figure of merit - flips per second - scales linearly with the number of probabilistic bits (p-bit) in the system. This makes sIM up to 6 orders of magnitude faster than a CPU implementing standard Gibbs sampling. Compared to optimized implementations in TPUs and GPUs, sIM delivers 5-18x speedup in sampling. In benchmark problems such as integer factorization, sIM can reliably factor semiprimes up to 32-bits, far larger than previous attempts from D-Wave and other probabilistic solvers. Strikingly, sIM beats competition-winning SAT solvers (by 4-700x in runtime to reach 95% accuracy) in solving 3SAT problems. Even when sampling is made inexact using faster clocks, sIM can find the correct ground state with further speedup. The problem encoding and sparsification techniques we introduce can be applied to other Ising Machines (classical and quantum) and the architecture we present can be used for scaling the demonstrated 5,000-10,000 p-bits to 1,000,000 or more through analog CMOS or nanodevices.

View on arXiv
Comments on this paper