Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.08101
Cited By
Representation Benefits of Deep Feedforward Networks
27 September 2015
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Representation Benefits of Deep Feedforward Networks"
50 / 63 papers shown
Title
Non-identifiability distinguishes Neural Networks among Parametric Models
Sourav Chatterjee
Timothy Sudijono
35
0
0
25 Apr 2025
On Space Folds of ReLU Neural Networks
Michal Lewandowski
Hamid Eghbalzadeh
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
MLT
87
1
0
17 Feb 2025
Extracting Formulae in Many-Valued Logic from Deep Neural Networks
Yani Zhang
Helmut Bölcskei
24
0
0
22 Jan 2024
Expressivity and Approximation Properties of Deep Neural Networks with ReLU
k
^k
k
Activation
Juncai He
Tong Mao
Jinchao Xu
45
3
0
27 Dec 2023
Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision
Arturs Berzins
27
5
0
12 Jun 2023
The Tunnel Effect: Building Data Representations in Deep Neural Networks
Wojciech Masarczyk
M. Ostaszewski
Ehsan Imani
Razvan Pascanu
Piotr Milo's
Tomasz Trzciñski
41
19
0
31 May 2023
Embeddings between Barron spaces with higher order activation functions
T. J. Heeringa
L. Spek
Felix L. Schwenninger
C. Brune
42
3
0
25 May 2023
Multi-Path Transformer is Better: A Case Study on Neural Machine Translation
Ye Lin
Shuhan Zhou
Yanyang Li
Anxiang Ma
Tong Xiao
Jingbo Zhu
38
0
0
10 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
96
33
0
29 Apr 2023
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
24
5
0
14 Apr 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
34
22
0
24 Feb 2023
Optimal Approximation Complexity of High-Dimensional Functions with Neural Networks
Vincent P. H. Goverse
Jad Hamdan
Jared Tanner
31
0
0
30 Jan 2023
Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions
Junyang Cai
Khai-Nguyen Nguyen
Nishant Shrestha
Aidan Good
Ruisen Tu
Xin Yu
Shandian Zhe
Thiago Serra
MLT
40
7
0
19 Jan 2023
Expected Gradients of Maxout Networks and Consequences to Parameter Initialization
Hanna Tseran
Guido Montúfar
ODL
32
0
0
17 Jan 2023
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
82
7
0
29 Dec 2022
Towards Global Neural Network Abstractions with Locally-Exact Reconstruction
Edoardo Manino
I. Bessa
Lucas C. Cordeiro
21
1
0
21 Oct 2022
Curved Representation Space of Vision Transformers
Juyeop Kim
Junha Park
Songkuk Kim
Jongseok Lee
ViT
41
6
0
11 Oct 2022
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
40
3
0
03 Oct 2022
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL
Fengzhuo Zhang
Boyi Liu
Kaixin Wang
Vincent Y. F. Tan
Zhuoran Yang
Zhaoran Wang
OffRL
LRM
51
10
0
20 Sep 2022
Universal Solutions of Feedforward ReLU Networks for Interpolations
Changcun Huang
25
2
0
16 Aug 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
46
5
0
15 Jul 2022
Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
Hao Chen
Yu Wang
Huan Xiong
GNN
21
6
0
01 Jun 2022
CNNs Avoid Curse of Dimensionality by Learning on Patches
Vamshi C. Madala
S. Chandrasekaran
Jason Bunk
UQCV
33
5
0
22 May 2022
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
64
30
0
04 Apr 2022
The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks
Xin Yu
Thiago Serra
Srikumar Ramalingam
Shandian Zhe
44
48
0
09 Mar 2022
Selective Network Linearization for Efficient Private Inference
Minsu Cho
Ameya Joshi
S. Garg
Brandon Reagen
C. Hegde
19
43
0
04 Feb 2022
Training Thinner and Deeper Neural Networks: Jumpstart Regularization
Carles Roger Riera Molina
Camilo Rey
Thiago Serra
Eloi Puertas
O. Pujol
27
4
0
30 Jan 2022
Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem
Clayton Sanford
Vaggos Chatziafratis
16
1
0
19 Oct 2021
Neural Network Approximation of Refinable Functions
Ingrid Daubechies
Ronald A. DeVore
Nadav Dym
Shira Faigenbaum-Golovin
S. Kovalsky
Kung-Chin Lin
Josiah Park
G. Petrova
B. Sober
46
14
0
28 Jul 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
34
43
0
25 Jun 2021
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
Guido Montúfar
Yue Ren
Leon Zhang
20
39
0
16 Apr 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
29
14
0
21 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
41
3
0
12 Jan 2021
Hierarchically Compositional Tasks and Deep Convolutional Networks
Arturo Deza
Q. Liao
Andrzej Banburski
T. Poggio
BDL
OOD
33
2
0
24 Jun 2020
Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size
Christoph Hertrich
M. Skutella
52
21
0
28 May 2020
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models
Zhaoqiang Liu
Jonathan Scarlett
19
38
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
40
161
0
25 Aug 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
Nonlinear Approximation and (Deep) ReLU Networks
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
22
138
0
05 May 2019
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
28
45
0
08 Mar 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
19
207
0
08 Jan 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Statistical Characteristics of Deep Representations: An Empirical Investigation
Daeyoung Choi
Kyungeun Lee
Changho Shin
Stephen J. Roberts
AI4TS
21
2
0
08 Nov 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
28
117
0
17 Oct 2018
The universal approximation power of finite-width deep ReLU networks
Dmytro Perekrestenko
Philipp Grohs
Dennis Elbrächter
Helmut Bölcskei
21
36
0
05 Jun 2018
Deep Learning Works in Practice. But Does it Work in Theory?
L. Hoang
R. Guerraoui
PINN
44
3
0
31 Jan 2018
The exploding gradient problem demystified - definition, prevalence, impact, origin, tradeoffs, and solutions
George Philipp
D. Song
J. Carbonell
ODL
35
46
0
15 Dec 2017
Approximating Continuous Functions by ReLU Nets of Minimal Width
Boris Hanin
Mark Sellke
50
229
0
31 Oct 2017
1
2
Next