ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01528
13
36

The universal approximation power of finite-width deep ReLU networks

5 June 2018
Dmytro Perekrestenko
Philipp Grohs
Dennis Elbrächter
Helmut Bölcskei
ArXivPDFHTML
Abstract

We show that finite-width deep ReLU neural networks yield rate-distortion optimal approximation (B\"olcskei et al., 2018) of polynomials, windowed sinusoidal functions, one-dimensional oscillatory textures, and the Weierstrass function, a fractal function which is continuous but nowhere differentiable. Together with their recently established universal approximation property of affine function systems (B\"olcskei et al., 2018), this shows that deep neural networks approximate vastly different signal structures generated by the affine group, the Weyl-Heisenberg group, or through warping, and even certain fractals, all with approximation error decaying exponentially in the number of neurons. We also prove that in the approximation of sufficiently smooth functions finite-width deep networks require strictly smaller connectivity than finite-depth wide networks.

View on arXiv
Comments on this paper