Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.08101
Cited By
Representation Benefits of Deep Feedforward Networks
27 September 2015
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Representation Benefits of Deep Feedforward Networks"
13 / 63 papers shown
Title
Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions
Nadav Cohen
Or Sharir
Yoav Levine
Ronen Tamari
David Yakira
Amnon Shashua
20
38
0
05 May 2017
Survey of Expressivity in Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
30
15
0
24 Nov 2016
Understanding Deep Neural Networks with Rectified Linear Units
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
41
637
0
04 Nov 2016
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
42
1,223
0
03 Oct 2016
Why does deep and cheap learning work so well?
Henry W. Lin
Max Tegmark
David Rolnick
40
603
0
29 Aug 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
29
778
0
16 Jun 2016
Inductive Bias of Deep Convolutional Networks through Pooling Geometry
Nadav Cohen
Amnon Shashua
22
132
0
22 May 2016
Learning Functions: When Is Deep Better Than Shallow
H. Mhaskar
Q. Liao
T. Poggio
33
144
0
03 Mar 2016
Efficient Representation of Low-Dimensional Manifolds using Deep Networks
Ronen Basri
David Jacobs
3DPC
22
44
0
15 Feb 2016
Benefits of depth in neural networks
Matus Telgarsky
155
603
0
14 Feb 2016
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
65
731
0
12 Dec 2015
Expressiveness of Rectifier Networks
Xingyuan Pan
Vivek Srikumar
OffRL
19
46
0
18 Nov 2015
On the Expressive Power of Deep Learning: A Tensor Analysis
Nadav Cohen
Or Sharir
Amnon Shashua
39
469
0
16 Sep 2015
Previous
1
2