Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
v1
v2 (latest)
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 679 papers shown
Title
Private Non-smooth Empirical Risk Minimization and Stochastic Convex Optimization in Subquadratic Steps
Janardhan Kulkarni
Y. Lee
Daogao Liu
66
28
0
29 Mar 2021
Stability and Deviation Optimal Risk Bounds with Convergence Rate
O
(
1
/
n
)
O(1/n)
O
(
1/
n
)
Yegor Klochkov
Nikita Zhivotovskiy
87
62
0
22 Mar 2021
Topology-Aware Segmentation Using Discrete Morse Theory
Xiaoling Hu
Yusu Wang
Fuxin Li
Dimitris Samaras
Chao Chen
88
91
0
18 Mar 2021
Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Medha Atre
B. Jha
Ashwini Rao
91
11
0
16 Mar 2021
Pre-interpolation loss behaviour in neural networks
Arthur E. W. Venter
Marthinus W. Theunissen
Marelie Hattingh Davel
43
3
0
14 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
125
449
0
14 Mar 2021
Reframing Neural Networks: Deep Structure in Overcomplete Representations
Calvin Murdock
George Cazenavette
Simon Lucey
BDL
69
5
0
10 Mar 2021
Self-Regularity of Non-Negative Output Weights for Overparameterized Two-Layer Neural Networks
D. Gamarnik
Eren C. Kizildaug
Ilias Zadik
95
1
0
02 Mar 2021
Private Stochastic Convex Optimization: Optimal Rates in
ℓ
1
\ell_1
ℓ
1
Geometry
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
63
94
0
02 Mar 2021
DPlis: Boosting Utility of Differentially Private Deep Learning via Randomized Smoothing
Wenxiao Wang
Tianhao Wang
Lun Wang
Nanqing Luo
Pan Zhou
Basel Alomair
R. Jia
109
16
0
02 Mar 2021
Smoothness Analysis of Adversarial Training
Sekitoshi Kanai
Masanori Yamada
Hiroshi Takahashi
Yuki Yamanaka
Yasutoshi Ida
AAML
106
6
0
02 Mar 2021
Acceleration via Fractal Learning Rate Schedules
Naman Agarwal
Surbhi Goel
Cyril Zhang
78
18
0
01 Mar 2021
Noisy Truncated SGD: Optimization and Generalization
Yingxue Zhou
Xinyan Li
A. Banerjee
69
3
0
26 Feb 2021
Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks
Huichen Li
Linyi Li
Xiaojun Xu
Xiaolu Zhang
Shuang Yang
Yue Liu
AAML
80
17
0
25 Feb 2021
A Probabilistically Motivated Learning Rate Adaptation for Stochastic Optimization
Filip de Roos
Carl Jidling
A. Wills
Thomas B. Schon
Philipp Hennig
52
3
0
22 Feb 2021
Generalization bounds for graph convolutional neural networks via Rademacher complexity
Shaogao Lv
GNN
120
16
0
20 Feb 2021
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability
Alec Farid
Anirudha Majumdar
81
36
0
12 Feb 2021
Stability of SGD: Tightness Analysis and Improved Bounds
Yikai Zhang
Wenjia Zhang
Sammy Bald
Vamsi Pingali
Chao Chen
Mayank Goswami
MLT
59
38
0
10 Feb 2021
Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
123
51
0
07 Feb 2021
Algorithmic Instabilities of Accelerated Gradient Descent
Amit Attia
Tomer Koren
33
8
0
03 Feb 2021
Stability and Generalization of the Decentralized Stochastic Gradient Descent
Tao Sun
Dongsheng Li
Bao Wang
43
0
0
02 Feb 2021
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
I Zaghloul Amir
Tomer Koren
Roi Livni
75
46
0
01 Feb 2021
Information-Theoretic Generalization Bounds for Stochastic Gradient Descent
Gergely Neu
Gintare Karolina Dziugaite
Mahdi Haghifam
Daniel M. Roy
133
90
0
01 Feb 2021
Painless step size adaptation for SGD
I. Kulikovskikh
Tarzan Legović
74
0
0
01 Feb 2021
On Data Efficiency of Meta-learning
Maruan Al-Shedivat
Liam Li
Eric Xing
Ameet Talwalkar
FedML
70
25
0
30 Jan 2021
Differentially Private SGD with Non-Smooth Losses
Puyu Wang
Yunwen Lei
Yiming Ying
Hai Zhang
83
28
0
22 Jan 2021
Faster Convergence in Deep-Predictive-Coding Networks to Learn Deeper Representations
I. Sledge
José C. Príncipe
71
2
0
18 Jan 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
95
25
0
17 Jan 2021
Learning with Gradient Descent and Weakly Convex Losses
Dominic Richards
Michael G. Rabbat
MLT
71
15
0
13 Jan 2021
Target Detection and Segmentation in Circular-Scan Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional Encoder-Decoders
I. Sledge
Matthew S. Emigh
Jonathan L. King
Denton L. Woods
J. T. Cobb
José C. Príncipe
76
17
0
10 Jan 2021
Reinforcement Learning for Control of Valves
Rajesh Siraskar
AI4CE
44
33
0
29 Dec 2020
Robustness, Privacy, and Generalization of Adversarial Training
Fengxiang He
Shaopeng Fu
Bohan Wang
Dacheng Tao
125
10
0
25 Dec 2020
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
232
169
0
24 Dec 2020
A Tight Lower Bound for Uniformly Stable Algorithms
Qinghua Liu
Zhou Lu
25
0
0
24 Dec 2020
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
132
51
0
20 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
145
50
0
14 Dec 2020
Analyzing Finite Neural Networks: Can We Trust Neural Tangent Kernel Theory?
Mariia Seleznova
Gitta Kutyniok
AAML
88
30
0
08 Dec 2020
Generalization bounds for deep learning
Guillermo Valle Pérez
A. Louis
BDL
84
45
0
07 Dec 2020
Characterization of Excess Risk for Locally Strongly Convex Population Risk
Mingyang Yi
Ruoyu Wang
Zhi-Ming Ma
46
2
0
04 Dec 2020
Learning with Knowledge of Structure: A Neural Network-Based Approach for MIMO-OFDM Detection
Zhou Zhou
Shashank Jere
Lizhong Zheng
Lingjia Liu
29
4
0
01 Dec 2020
On the Overlooked Pitfalls of Weight Decay and How to Mitigate Them: A Gradient-Norm Perspective
Zeke Xie
Zhiqiang Xu
Jingzhao Zhang
Issei Sato
Masashi Sugiyama
91
25
0
23 Nov 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
89
61
0
17 Nov 2020
SALR: Sharpness-aware Learning Rate Scheduler for Improved Generalization
Xubo Yue
Maher Nouiehed
Raed Al Kontar
ODL
40
4
0
10 Nov 2020
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
102
18
0
04 Nov 2020
Cross-Lingual Document Retrieval with Smooth Learning
Jiapeng Liu
Xiao Zhang
Dan Goldwasser
Xiao Wang
47
9
0
02 Nov 2020
Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC
Arun Ganesh
Kunal Talwar
FedML
84
41
0
27 Oct 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
102
24
0
27 Oct 2020
Toward Better Generalization Bounds with Locally Elastic Stability
Zhun Deng
Hangfeng He
Weijie J. Su
71
44
0
27 Oct 2020
Stochastic Optimization with Laggard Data Pipelines
Naman Agarwal
Rohan Anil
Tomer Koren
Kunal Talwar
Cyril Zhang
35
12
0
26 Oct 2020
Stochastic Gradient Descent Meets Distribution Regression
Nicole Mücke
67
5
0
24 Oct 2020
Previous
1
2
3
...
7
8
9
...
12
13
14
Next