Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 275 papers shown
Title
Benign Underfitting of Stochastic Gradient Descent
Tomer Koren
Roi Livni
Yishay Mansour
Uri Sherman
MLT
22
13
0
27 Feb 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
32
6
0
27 Feb 2022
Benefit of Interpolation in Nearest Neighbor Algorithms
Yue Xing
Qifan Song
Guang Cheng
17
28
0
23 Feb 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
31
8
0
18 Feb 2022
Improving Computational Complexity in Statistical Models with Second-Order Information
Tongzheng Ren
Jiacheng Zhuo
Sujay Sanghavi
Nhat Ho
11
1
0
09 Feb 2022
Differentially Private SGDA for Minimax Problems
Zhenhuan Yang
Shu Hu
Yunwen Lei
Kush R. Varshney
Siwei Lyu
Yiming Ying
36
19
0
22 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
27
34
0
20 Jan 2022
On generalization bounds for deep networks based on loss surface implicit regularization
Masaaki Imaizumi
Johannes Schmidt-Hieber
ODL
34
3
0
12 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
34
8
0
09 Jan 2022
Stable Conformal Prediction Sets
Eugène Ndiaye
35
20
0
19 Dec 2021
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
26
0
0
08 Dec 2021
Black-box tests for algorithmic stability
Byol Kim
Rina Foygel Barber
AAML
25
13
0
30 Nov 2021
Multi-fidelity Stability for Graph Representation Learning
Yihan He
Joan Bruna
22
0
0
25 Nov 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
44
57
0
24 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
24
3
0
19 Nov 2021
Training Neural Networks with Fixed Sparse Masks
Yi-Lin Sung
Varun Nair
Colin Raffel
FedML
32
197
0
18 Nov 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
28
8
0
11 Nov 2021
Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles
Tianyi Yao
Minjie Wang
Genevera I. Allen
16
1
0
22 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
29
33
0
16 Oct 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach
Qitian Wu
Chenxiao Yang
Junchi Yan
27
32
0
09 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
39
22
0
07 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
41
28
0
06 Oct 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Boddeti
37
5
0
12 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
27
43
0
02 Sep 2021
Stability and Generalization for Randomized Coordinate Descent
Puyu Wang
Liang Wu
Yunwen Lei
27
7
0
17 Aug 2021
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
Chiyuan Zhang
M. Raghu
Jon M. Kleinberg
Samy Bengio
OOD
32
30
0
27 Jul 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily
Cristóbal Guzmán
Michael Menart
52
55
0
12 Jul 2021
Optimal Rates for Random Order Online Optimization
Uri Sherman
Tomer Koren
Yishay Mansour
21
8
0
29 Jun 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
36
25
0
17 Jun 2021
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels
Dai Hai Nguyen
Canh Hao Nguyen
Hiroshi Mamitsuka
16
6
0
08 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
32
30
0
01 May 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
32
29
0
31 Mar 2021
Topology-Aware Segmentation Using Discrete Morse Theory
Xiaoling Hu
Yusu Wang
Fuxin Li
Dimitris Samaras
Chao Chen
29
89
0
18 Mar 2021
Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Medha Atre
B. Jha
Ashwini Rao
20
11
0
16 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
Reframing Neural Networks: Deep Structure in Overcomplete Representations
Calvin Murdock
George Cazenavette
Simon Lucey
BDL
41
4
0
10 Mar 2021
Private Stochastic Convex Optimization: Optimal Rates in
ℓ
1
\ell_1
ℓ
1
Geometry
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
30
91
0
02 Mar 2021
Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks
Huichen Li
Linyi Li
Xiaojun Xu
Xiaolu Zhang
Shuang Yang
Bo-wen Li
AAML
33
17
0
25 Feb 2021
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability
Alec Farid
Anirudha Majumdar
27
36
0
12 Feb 2021
Stability of SGD: Tightness Analysis and Improved Bounds
Yikai Zhang
Wenjia Zhang
Sammy Bald
Vamsi Pingali
Chao Chen
Mayank Goswami
MLT
27
37
0
10 Feb 2021
Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
25
49
0
07 Feb 2021
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
I Zaghloul Amir
Tomer Koren
Roi Livni
29
46
0
01 Feb 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
27
25
0
17 Jan 2021
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
130
161
0
24 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
37
58
0
17 Nov 2020
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
18
18
0
04 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
Previous
1
2
3
4
5
6
Next