Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
v1
v2 (latest)
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 679 papers shown
Title
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
Junhyung Lyle Kim
Panos Toulis
Anastasios Kyrillidis
97
8
0
11 Nov 2021
Learning Rates for Nonconvex Pairwise Learning
Shaojie Li
Yong Liu
95
2
0
09 Nov 2021
Cooperative Deep
Q
Q
Q
-learning Framework for Environments Providing Image Feedback
Krishnan Raghavan
Vignesh Narayanan
S. Jagannathan
VLM
OffRL
57
1
0
28 Oct 2021
Learning to Control using Image Feedback
Krishnan Raghavan
Vignesh Narayanan
Jagannathan Saraangapani
37
0
0
28 Oct 2021
Optimizing Information-theoretical Generalization Bounds via Anisotropic Noise in SGLD
Bohan Wang
Huishuai Zhang
Jieyu Zhang
Qi Meng
Wei Chen
Tie-Yan Liu
44
1
0
26 Oct 2021
Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles
Tianyi Yao
Minjie Wang
Genevera I. Allen
67
1
0
22 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
109
14
0
22 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
67
34
0
16 Oct 2021
Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent
Zhaolin Ren
Fuheng Cui
Alexia Atsidakou
Sujay Sanghavi
Nhat Ho
43
6
0
15 Oct 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach
Qitian Wu
Chenxiao Yang
Junchi Yan
67
34
0
09 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
124
26
0
07 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
111
30
0
06 Oct 2021
Regularization Guarantees Generalization in Bayesian Reinforcement Learning through Algorithmic Stability
Aviv Tamar
Daniel Soudry
E. Zisselman
OOD
OffRL
51
7
0
24 Sep 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Boddeti
64
5
0
12 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
98
44
0
02 Sep 2021
The Impact of Reinitialization on Generalization in Convolutional Neural Networks
Ibrahim Alabdulmohsin
Hartmut Maennel
Daniel Keysers
AI4CE
61
21
0
01 Sep 2021
Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators
Zihang Meng
Vikas Singh
Sathya Ravi
53
1
0
19 Aug 2021
Stability and Generalization for Randomized Coordinate Descent
Puyu Wang
Liang Wu
Yunwen Lei
58
7
0
17 Aug 2021
Towards Understanding Theoretical Advantages of Complex-Reaction Networks
Shao-Qun Zhang
Gaoxin Wei
Zhi Zhou
58
17
0
15 Aug 2021
Implicit Sparse Regularization: The Impact of Depth and Early Stopping
Jiangyuan Li
Thanh V. Nguyen
Chinmay Hegde
R. K. Wong
93
30
0
12 Aug 2021
Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
Umut Simsekli
Rajiv Khanna
Michael W. Mahoney
90
23
0
02 Aug 2021
Faster Rates of Private Stochastic Convex Optimization
Jinyan Su
Lijie Hu
Di Wang
102
13
0
31 Jul 2021
Stability & Generalisation of Gradient Descent for Shallow Neural Networks without the Neural Tangent Kernel
Dominic Richards
Ilja Kuzborskij
84
29
0
27 Jul 2021
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
Chiyuan Zhang
M. Raghu
Jon M. Kleinberg
Samy Bengio
OOD
111
32
0
27 Jul 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
105
13
0
19 Jul 2021
Transfer Learning in Multi-Agent Reinforcement Learning with Double Q-Networks for Distributed Resource Sharing in V2X Communication
Hammad Zafar
Zoran Utkovski
Martin Kasparick
S. Stańczak
OffRL
29
3
0
13 Jul 2021
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily
Cristóbal Guzmán
Michael Menart
110
56
0
12 Jul 2021
AdaL: Adaptive Gradient Transformation Contributes to Convergences and Generalizations
Hongwei Zhang
Weidong Zou
Hongbo Zhao
Qi Ming
Tijin Yan
Yuanqing Xia
Weipeng Cao
ODL
36
0
0
04 Jul 2021
Never Go Full Batch (in Stochastic Convex Optimization)
I Zaghloul Amir
Y. Carmon
Tomer Koren
Roi Livni
78
14
0
29 Jun 2021
Optimal Rates for Random Order Online Optimization
Uri Sherman
Tomer Koren
Yishay Mansour
63
8
0
29 Jun 2021
Deep Learning for Functional Data Analysis with Adaptive Basis Layers
Ju Yao
Jonas W. Mueller
Jane-ling Wang
183
27
0
19 Jun 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
98
27
0
17 Jun 2021
Towards Understanding Generalization via Decomposing Excess Risk Dynamics
Jiaye Teng
Jianhao Ma
Yang Yuan
68
4
0
11 Jun 2021
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels
Dai Hai Nguyen
Canh Hao Nguyen
Hiroshi Mamitsuka
56
9
0
08 Jun 2021
Stability and Generalization of Bilevel Programming in Hyperparameter Optimization
Fan Bao
Guoqiang Wu
Chongxuan Li
Jun Zhu
Bo Zhang
85
31
0
08 Jun 2021
What training reveals about neural network complexity
Andreas Loukas
Marinos Poiitis
Stefanie Jegelka
72
11
0
08 Jun 2021
The Randomness of Input Data Spaces is an A Priori Predictor for Generalization
Martin Briesch
Dominik Sobania
Franz Rothlauf
UQCV
37
1
0
08 Jun 2021
Minibatch and Momentum Model-based Methods for Stochastic Weakly Convex Optimization
Qi Deng
Wenzhi Gao
88
14
0
06 Jun 2021
Dynamic Scheduling for Over-the-Air Federated Edge Learning with Energy Constraints
Yuxuan Sun
Sheng Zhou
Z. Niu
Deniz Gündüz
107
100
0
31 May 2021
On the geometry of generalization and memorization in deep neural networks
Cory Stephenson
Suchismita Padhy
Abhinav Ganesh
Yue Hui
Hanlin Tang
SueYeon Chung
TDI
AI4CE
85
74
0
30 May 2021
Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems
Prateek Jain
S. Kowshik
Dheeraj M. Nagaraj
Praneeth Netrapalli
OffRL
95
23
0
24 May 2021
Why Does Multi-Epoch Training Help?
Yi Tian Xu
Qi Qian
Hao Li
Rong Jin
69
1
0
13 May 2021
Stability and Generalization of Stochastic Gradient Methods for Minimax Problems
Yunwen Lei
Zhenhuan Yang
Tianbao Yang
Yiming Ying
85
48
0
08 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
92
30
0
01 May 2021
Random Reshuffling with Variance Reduction: New Analysis and Better Rates
Grigory Malinovsky
Alibek Sailanbayev
Peter Richtárik
56
21
0
19 Apr 2021
PAC Bayesian Performance Guarantees for Deep (Stochastic) Networks in Medical Imaging
Anthony Sicilia
Xingchen Zhao
Anastasia Sosnovskikh
Seong Jae Hwang
BDL
UQCV
82
4
0
12 Apr 2021
Optimal Algorithms for Differentially Private Stochastic Monotone Variational Inequalities and Saddle-Point Problems
Digvijay Boob
Cristóbal Guzmán
64
17
0
07 Apr 2021
Neurons learn slower than they think
I. Kulikovskikh
26
0
0
02 Apr 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
123
30
0
31 Mar 2021
Research of Damped Newton Stochastic Gradient Descent Method for Neural Network Training
Jingcheng Zhou
Wei Wei
Zhiming Zheng
ODL
32
0
0
31 Mar 2021
Previous
1
2
3
...
6
7
8
...
12
13
14
Next