Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 264 papers shown
Title
Online Learning and Unlearning
Yaxi Hu
Bernhard Schölkopf
Amartya Sanyal
MU
OnRL
58
0
0
13 May 2025
Rapid Overfitting of Multi-Pass Stochastic Gradient Descent in Stochastic Convex Optimization
Shira Vansover-Hager
Tomer Koren
Roi Livni
39
0
0
13 May 2025
Stability Regularized Cross-Validation
Ryan Cory-Wright
A. Gómez
31
0
0
11 May 2025
Gradient Descent as a Shrinkage Operator for Spectral Bias
Simon Lucey
38
0
0
25 Apr 2025
NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Xinyu Zhou
Simin Fan
Martin Jaggi
Jie Fu
41
0
0
24 Apr 2025
Leave-One-Out Stable Conformal Prediction
Kiljae Lee
Yuan Zhang
52
0
0
16 Apr 2025
Better Rates for Random Task Orderings in Continual Linear Models
Itay Evron
Ran Levinstein
Matan Schliserman
Uri Sherman
Tomer Koren
Daniel Soudry
Nathan Srebro
CLL
40
0
0
06 Apr 2025
Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
Sijia Zhou
Yunwen Lei
Ata Kabán
34
0
0
03 Apr 2025
Learning Variational Inequalities from Data: Fast Generalization Rates under Strong Monotonicity
Eric Zhao
Tatjana Chavdarova
Michael I. Jordan
50
0
0
20 Feb 2025
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
Roni Khardon
BDL
49
0
0
17 Feb 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
49
0
0
11 Feb 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
89
1
0
25 Nov 2024
Understanding Generalization in Quantum Machine Learning with Margins
Tak Hur
Daniel K. Park
AI4CE
39
1
0
11 Nov 2024
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
59
2
0
17 Oct 2024
Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods
Hossein Taheri
Christos Thrampoulidis
Arya Mazumdar
MLT
36
0
0
13 Oct 2024
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
26
0
0
09 Oct 2024
How Much Can We Forget about Data Contamination?
Sebastian Bordt
Suraj Srinivas
Valentyn Boreiko
U. V. Luxburg
54
1
0
04 Oct 2024
A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
Yan Sun
Li Shen
Dacheng Tao
FedML
32
0
0
27 Sep 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
52
0
0
11 Jun 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
48
0
0
03 May 2024
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
Roi Livni
MLT
39
1
0
07 Apr 2024
Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
Lucas Böttcher
Gregory R. Wheeler
32
0
0
05 Apr 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
46
2
0
07 Feb 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
80
1
0
17 Jan 2024
Convex SGD: Generalization Without Early Stopping
Julien Hendrickx
A. Olshevsky
MLT
LRM
25
1
0
08 Jan 2024
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
49
2
0
07 Dec 2023
Generalization Bounds for Label Noise Stochastic Gradient Descent
Jung Eun Huh
Patrick Rebeschini
13
1
0
01 Nov 2023
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
V. Cevher
34
12
0
31 Oct 2023
Stability and Generalization of the Decentralized Stochastic Gradient Descent Ascent Algorithm
Miaoxi Zhu
Li Shen
Bo Du
Dacheng Tao
26
6
0
31 Oct 2023
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang
Junchi Yang
Amin Karbasi
Niao He
34
2
0
26 Oct 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
28
0
0
19 Oct 2023
Online Estimation with Rolling Validation: Adaptive Nonparametric Estimation with Streaming Data
Tianyu Zhang
Jing Lei
13
1
0
18 Oct 2023
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
51
7
0
12 Oct 2023
Adversarial Style Transfer for Robust Policy Optimization in Deep Reinforcement Learning
Md Masudur Rahman
Yexiang Xue
29
4
0
29 Aug 2023
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms
Minghao Yang
Xiyuan Wei
Tianbao Yang
Yiming Ying
50
1
0
07 Jul 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
33
8
0
26 Jun 2023
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Patrik Okanovic
R. Waleffe
Vasilis Mageirakos
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
Nezihe Merve Gürel
Theodoros Rekatsinas
DD
55
12
0
28 May 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
31
4
0
26 May 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
Stability and Generalization of lp-Regularized Stochastic Learning for GCN
Shiyu Liu
Linsen Wei
Shaogao Lv
Ming Li
MLT
25
0
0
20 May 2023
Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent
Lingjiong Zhu
Mert Gurbuzbalaban
Anant Raj
Umut Simsekli
34
6
0
20 May 2023
Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination
Ming Hu
Zhihao Yue
Zhiwei Ling
Cheng Chen
Yihao Huang
Xian Wei
Xiang Lian
Yang Liu
Mingsong Chen
FedML
23
8
0
18 May 2023
Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
Yuxin Dong
Tieliang Gong
Hao Chen
Chen Li
23
4
0
02 May 2023
Learning Trajectories are Generalization Indicators
Jingwen Fu
Zhizheng Zhang
Dacheng Yin
Yan Lu
Nanning Zheng
AI4CE
36
3
0
25 Apr 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
33
4
0
31 Mar 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
23
1
0
10 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
31
40
0
09 Feb 2023
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
Bryn Elesedy
Marcus Hutter
19
1
0
06 Feb 2023
Efficient Gradient Approximation Method for Constrained Bilevel Optimization
Siyuan Xu
Minghui Zhu
29
20
0
03 Feb 2023
1
2
3
4
5
6
Next