ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.00671
  4. Cited By
Sample-Optimal Density Estimation in Nearly-Linear Time

Sample-Optimal Density Estimation in Nearly-Linear Time

1 June 2015
Jayadev Acharya
Ilias Diakonikolas
Jingkai Li
Ludwig Schmidt
ArXivPDFHTML

Papers citing "Sample-Optimal Density Estimation in Nearly-Linear Time"

50 / 55 papers shown
Title
Breaking the curse of dimensionality in structured density estimation
Breaking the curse of dimensionality in structured density estimation
Robert A. Vandermeulen
Wai Ming Tai
Bryon Aragam
35
0
0
10 Oct 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable
  Benefits of Interactivity
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
51
0
0
09 Dec 2023
Testing Closeness of Multivariate Distributions via Ramsey Theory
Testing Closeness of Multivariate Distributions via Ramsey Theory
Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
23
2
0
22 Nov 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number
  of Samples
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
37
5
0
07 Sep 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture
  Models
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
53
23
0
07 Mar 2023
Near-Optimal Bounds for Testing Histogram Distributions
Near-Optimal Bounds for Testing Histogram Distributions
C. Canonne
Ilias Diakonikolas
D. Kane
Sihan Liu
25
3
0
14 Jul 2022
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
Avishek Ghosh
A. Mazumdar
S. Pal
Rajat Sen
26
10
0
26 May 2022
Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures
Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures
Bryon Aragam
W. Tai
35
3
0
28 Mar 2022
Support Recovery in Mixture Models with Sparse Parameters
Support Recovery in Mixture Models with Sparse Parameters
A. Mazumdar
S. Pal
14
0
0
24 Feb 2022
TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
  Algorithm
TURF: A Two-factor, Universal, Robust, Fast Distribution Learning Algorithm
Yi Hao
Ayush Jain
A. Orlitsky
V. Ravindrakumar
OOD
24
0
0
15 Feb 2022
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
35
23
0
01 Dec 2021
Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
  Estimation
Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean Estimation
Ilias Diakonikolas
D. Kane
Daniel Kongsgaard
Jingkai Li
Kevin Tian
FedML
36
21
0
16 Jun 2021
Robust Model Selection and Nearly-Proper Learning for GMMs
Robust Model Selection and Nearly-Proper Learning for GMMs
Jungshian Li
Allen Liu
Ankur Moitra
34
3
0
05 Jun 2021
Small Covers for Near-Zero Sets of Polynomials and Learning Latent
  Variable Models
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models
Ilias Diakonikolas
D. Kane
28
32
0
14 Dec 2020
Efficient Interpolation of Density Estimators
Efficient Interpolation of Density Estimators
Paxton Turner
Jingbo Liu
Philippe Rigollet
22
3
0
10 Nov 2020
Efficient Algorithms for Multidimensional Segmented Regression
Efficient Algorithms for Multidimensional Segmented Regression
Ilias Diakonikolas
Jerry Li
Anastasia Voloshinov
18
5
0
24 Mar 2020
A General Method for Robust Learning from Batches
A General Method for Robust Learning from Batches
Ayush Jain
A. Orlitsky
OOD
17
16
0
25 Feb 2020
Learning Structured Distributions From Untrusted Batches: Faster and
  Simpler
Learning Structured Distributions From Untrusted Batches: Faster and Simpler
Sitan Chen
Jungshian Li
Ankur Moitra
29
18
0
24 Feb 2020
SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm
SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm
Yi Hao
Ayush Jain
A. Orlitsky
V. Ravindrakumar
104
6
0
22 Feb 2020
Algebraic and Analytic Approaches for Parameter Learning in Mixture
  Models
Algebraic and Analytic Approaches for Parameter Learning in Mixture Models
A. Krishnamurthy
A. Mazumdar
A. Mcgregor
S. Pal
11
7
0
19 Jan 2020
Learning Mixtures of Linear Regressions in Subexponential Time via
  Fourier Moments
Learning Mixtures of Linear Regressions in Subexponential Time via Fourier Moments
Sitan Chen
Jingkai Li
Zhao Song
31
39
0
16 Dec 2019
Efficiently Learning Structured Distributions from Untrusted Batches
Efficiently Learning Structured Distributions from Untrusted Batches
Sitan Chen
Jingkai Li
Ankur Moitra
OOD
FedML
44
16
0
05 Nov 2019
Generalized Resilience and Robust Statistics
Generalized Resilience and Robust Statistics
Banghua Zhu
Jiantao Jiao
Jacob Steinhardt
35
45
0
19 Sep 2019
A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via
  Locally Exponential Families
A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families
Brian Axelrod
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
Gregory Valiant
37
9
0
18 Jul 2019
Private Hypothesis Selection
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
25
89
0
30 May 2019
Optimality of Maximum Likelihood for Log-Concave Density Estimation and
  Bounded Convex Regression
Optimality of Maximum Likelihood for Log-Concave Density Estimation and Bounded Convex Regression
Gil Kur
Y. Dagan
Alexander Rakhlin
16
25
0
13 Mar 2019
Data Amplification: Instance-Optimal Property Estimation
Data Amplification: Instance-Optimal Property Estimation
Yi Hao
A. Orlitsky
28
20
0
04 Mar 2019
Learning and Generalization in Overparameterized Neural Networks, Going
  Beyond Two Layers
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
51
766
0
12 Nov 2018
Density estimation for shift-invariant multidimensional distributions
Density estimation for shift-invariant multidimensional distributions
Jonathan Levy
M. J. van der Laan
Rocco A. Servedio
OOD
17
5
0
09 Nov 2018
Robust Nonparametric Regression under Huber's $ε$-contamination
  Model
Robust Nonparametric Regression under Huber's εεε-contamination Model
S. Du
Yining Wang
Sivaraman Balakrishnan
Pradeep Ravikumar
Aarti Singh
28
12
0
26 May 2018
Fast Multivariate Log-Concave Density Estimation
Fast Multivariate Log-Concave Density Estimation
Fabian Rathke
Christoph Schnörr
45
9
0
18 May 2018
Testing Identity of Multidimensional Histograms
Testing Identity of Multidimensional Histograms
Ilias Diakonikolas
D. Kane
John Peebles
19
16
0
10 Apr 2018
Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation
  of Multivariate Log-concave Densities
Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities
Timothy Carpenter
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
26
24
0
28 Feb 2018
Fast and Sample Near-Optimal Algorithms for Learning Multidimensional
  Histograms
Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
29
20
0
23 Feb 2018
Hadamard Response: Estimating Distributions Privately, Efficiently, and
  with Little Communication
Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
26
148
0
13 Feb 2018
On the nonparametric maximum likelihood estimator for Gaussian location
  mixture densities with application to Gaussian denoising
On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising
Sujayam Saha
Adityanand Guntuboyina
49
46
0
06 Dec 2017
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical
  Gaussians
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
27
146
0
20 Nov 2017
Sample-Efficient Learning of Mixtures
Sample-Efficient Learning of Mixtures
H. Ashtiani
Shai Ben-David
Abbas Mehrabian
13
25
0
06 Jun 2017
Near-Optimal Closeness Testing of Discrete Histogram Distributions
Near-Optimal Closeness Testing of Discrete Histogram Distributions
Ilias Diakonikolas
D. Kane
Vladimir Nikishkin
34
30
0
06 Mar 2017
Computationally Efficient Robust Estimation of Sparse Functionals
Computationally Efficient Robust Estimation of Sparse Functionals
S. Du
Sivaraman Balakrishnan
Aarti Singh
32
18
0
24 Feb 2017
Testing Bayesian Networks
Testing Bayesian Networks
C. Canonne
Ilias Diakonikolas
D. Kane
Alistair Stewart
TPM
27
69
0
09 Dec 2016
Statistical Query Lower Bounds for Robust Estimation of High-dimensional
  Gaussians and Gaussian Mixtures
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
38
230
0
10 Nov 2016
Fast Algorithms for Segmented Regression
Fast Algorithms for Segmented Regression
Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
34
31
0
14 Jul 2016
Robust Learning of Fixed-Structure Bayesian Networks
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
48
46
0
23 Jun 2016
Efficient Robust Proper Learning of Log-concave Distributions
Efficient Robust Proper Learning of Log-concave Distributions
Ilias Diakonikolas
D. Kane
Alistair Stewart
40
30
0
09 Jun 2016
Learning Multivariate Log-concave Distributions
Learning Multivariate Log-concave Distributions
Ilias Diakonikolas
D. Kane
Alistair Stewart
49
30
0
26 May 2016
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
34
508
0
21 Apr 2016
Properly Learning Poisson Binomial Distributions in Almost Polynomial
  Time
Properly Learning Poisson Binomial Distributions in Almost Polynomial Time
Ilias Diakonikolas
D. Kane
Alistair Stewart
50
28
0
12 Nov 2015
Optimal Algorithms and Lower Bounds for Testing Closeness of Structured
  Distributions
Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions
Ilias Diakonikolas
D. Kane
Vladimir Nikishkin
16
48
0
22 Aug 2015
Optimal Testing for Properties of Distributions
Optimal Testing for Properties of Distributions
Jayadev Acharya
C. Daskalakis
Gautam Kamath
27
159
0
21 Jul 2015
12
Next