ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.04922
12
3

Efficient Interpolation of Density Estimators

10 November 2020
Paxton Turner
Jingbo Liu
Philippe Rigollet
ArXivPDFHTML
Abstract

We study the problem of space and time efficient evaluation of a nonparametric estimator that approximates an unknown density. In the regime where consistent estimation is possible, we use a piecewise multivariate polynomial interpolation scheme to give a computationally efficient construction that converts the original estimator to a new estimator that can be queried efficiently and has low space requirements, all without adversely deteriorating the original approximation quality. Our result gives a new statistical perspective on the problem of fast evaluation of kernel density estimators in the presence of underlying smoothness. As a corollary, we give a succinct derivation of a classical result of Kolmogorov---Tikhomirov on the metric entropy of H\"{o}lder classes of smooth functions.

View on arXiv
Comments on this paper