11
7

Algebraic and Analytic Approaches for Parameter Learning in Mixture Models

Abstract

We present two different approaches for parameter learning in several mixture models in one dimension. Our first approach uses complex-analytic methods and applies to Gaussian mixtures with shared variance, binomial mixtures with shared success probability, and Poisson mixtures, among others. An example result is that exp(O(N1/3))\exp(O(N^{1/3})) samples suffice to exactly learn a mixture of k<Nk<N Poisson distributions, each with integral rate parameters bounded by NN. Our second approach uses algebraic and combinatorial tools and applies to binomial mixtures with shared trial parameter NN and differing success parameters, as well as to mixtures of geometric distributions. Again, as an example, for binomial mixtures with kk components and success parameters discretized to resolution ϵ\epsilon, O(k2(N/ϵ)8/ϵ)O(k^2(N/\epsilon)^{8/\sqrt{\epsilon}}) samples suffice to exactly recover the parameters. For some of these distributions, our results represent the first guarantees for parameter estimation.

View on arXiv
Comments on this paper