ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,268 papers shown
Title
iUNets: Fully invertible U-Nets with Learnable Up- and Downsampling
iUNets: Fully invertible U-Nets with Learnable Up- and Downsampling
Christian Etmann
Rihuan Ke
Carola-Bibiane Schönlieb
SSeg
58
19
0
11 May 2020
A review of radar-based nowcasting of precipitation and applicable
  machine learning techniques
A review of radar-based nowcasting of precipitation and applicable machine learning techniques
R. Prudden
Samantha V. Adams
D. Kangin
Nial H. Robinson
Suman V. Ravuri
S. Mohamed
A. Arribas
AI4ClOffRL
94
45
0
11 May 2020
Jukebox: A Generative Model for Music
Jukebox: A Generative Model for Music
Prafulla Dhariwal
Heewoo Jun
Christine Payne
Jong Wook Kim
Alec Radford
Ilya Sutskever
VLM
171
758
0
30 Apr 2020
A Practical Framework for Relation Extraction with Noisy Labels Based on
  Doubly Transitional Loss
A Practical Framework for Relation Extraction with Noisy Labels Based on Doubly Transitional Loss
Shanchan Wu
Kai Fan
NoLa
23
2
0
28 Apr 2020
Local Clustering with Mean Teacher for Semi-supervised Learning
Local Clustering with Mean Teacher for Semi-supervised Learning
Zexi Chen
B. Dutton
B. Ramachandra
Tianfu Wu
Ranga Raju Vatsavai
63
7
0
20 Apr 2020
On the Encoder-Decoder Incompatibility in Variational Text Modeling and
  Beyond
On the Encoder-Decoder Incompatibility in Variational Text Modeling and Beyond
Chen Henry Wu
P. Wang
Wenjie Wang
DRL
36
4
0
20 Apr 2020
Roundtrip: A Deep Generative Neural Density Estimator
Roundtrip: A Deep Generative Neural Density Estimator
Qiao Liu
Jiaze Xu
R. Jiang
W. Wong
OT
44
4
0
20 Apr 2020
A Universal Approximation Theorem of Deep Neural Networks for Expressing
  Probability Distributions
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
Yulong Lu
Jianfeng Lu
40
19
0
19 Apr 2020
Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
  Circuits
Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits
Robert Peharz
Steven Braun
Antonio Vergari
Karl Stelzner
Alejandro Molina
Martin Trapp
Guy Van den Broeck
Kristian Kersting
Zoubin Ghahramani
TPM
65
126
0
13 Apr 2020
Decoupling Global and Local Representations via Invertible Generative
  Flows
Decoupling Global and Local Representations via Invertible Generative Flows
Xuezhe Ma
X. Kong
Shanghang Zhang
Eduard H. Hovy
DRL
84
3
0
12 Apr 2020
Scaling Bayesian inference of mixed multinomial logit models to very
  large datasets
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Filipe Rodrigues
BDL
100
3
0
11 Apr 2020
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and
  Data Augmentation
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
Sajad Norouzi
David J. Fleet
Mohammad Norouzi
VLMDRL
60
3
0
09 Apr 2020
Lossless Image Compression through Super-Resolution
Lossless Image Compression through Super-Resolution
Shengcao Cao
Chaoxia Wu
Philipp Krahenbuhl
74
40
0
06 Apr 2020
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
86
30
0
06 Apr 2020
Deep transformation models: Tackling complex regression problems with
  neural network based transformation models
Deep transformation models: Tackling complex regression problems with neural network based transformation models
Beate Sick
Torsten Hothorn
Oliver Durr
MedImBDLOODUQCV
55
29
0
01 Apr 2020
SUMO: Unbiased Estimation of Log Marginal Probability for Latent
  Variable Models
SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo
Alex Beatson
Mohammad Norouzi
Jun Zhu
David Duvenaud
Ryan P. Adams
Ricky T. Q. Chen
141
29
0
01 Apr 2020
A theory of independent mechanisms for extrapolation in generative
  models
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
85
26
0
01 Apr 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRLAI4CE
114
163
0
31 Mar 2020
AriEL: volume coding for sentence generation
AriEL: volume coding for sentence generation
Luca Herranz-Celotti
Simon Brodeur
Jean Rouat
36
0
0
30 Mar 2020
Deep Learning-Based Anomaly Detection in Cyber-Physical Systems:
  Progress and Opportunities
Deep Learning-Based Anomaly Detection in Cyber-Physical Systems: Progress and Opportunities
Yuan Luo
Ya Xiao
Long Cheng
Guojun Peng
D. Yao
82
163
0
30 Mar 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
56
6
0
28 Mar 2020
Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
  Neural Distribution Alignment
Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable Neural Distribution Alignment
Ben Usman
Avneesh Sud
Nick Dufour
Kate Saenko
OOD
39
13
0
26 Mar 2020
Weakly Supervised 3D Human Pose and Shape Reconstruction with
  Normalizing Flows
Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows
Andrei Zanfir
Eduard Gabriel Bazavan
Hongyi Xu
Bill Freeman
Rahul Sukthankar
C. Sminchisescu
3DH
95
136
0
23 Mar 2020
Efficient sampling generation from explicit densities via Normalizing
  Flows
Efficient sampling generation from explicit densities via Normalizing Flows
Sebastian Pina-Otey
Thorsten Lux
F. Sánchez
Vicens Gaitán
25
0
0
23 Mar 2020
Learning Better Lossless Compression Using Lossy Compression
Learning Better Lossless Compression Using Lossy Compression
Fabian Mentzer
Luc Van Gool
Michael Tschannen
146
72
0
23 Mar 2020
Deep Markov Spatio-Temporal Factorization
Deep Markov Spatio-Temporal Factorization
Amirreza Farnoosh
B. Rezaei
Eli Sennesh
Zulqarnain Khan
Jennifer Dy
Ajay Satpute
J. B. Hutchinson
Jan-Willem van de Meent
Sarah Ostadabbas
AI4TS
58
5
0
22 Mar 2020
DLow: Diversifying Latent Flows for Diverse Human Motion Prediction
DLow: Diversifying Latent Flows for Diverse Human Motion Prediction
Ye Yuan
Kris Kitani
DiffM
124
245
0
18 Mar 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
83
12
0
17 Mar 2020
Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes
Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes
André Mendes
Julian Togelius
L. Coelho
41
0
0
15 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
247
797
0
13 Mar 2020
Generalized Energy Based Models
Generalized Energy Based Models
Michael Arbel
Liang Zhou
Arthur Gretton
DRL
179
81
0
10 Mar 2020
Variational Inference for Deep Probabilistic Canonical Correlation
  Analysis
Variational Inference for Deep Probabilistic Canonical Correlation Analysis
Mahdi Karami
Dale Schuurmans
BDL
21
4
0
09 Mar 2020
FormulaZero: Distributionally Robust Online Adaptation via Offline
  Population Synthesis
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha
Matthew O'Kelly
Hongrui Zheng
Rahul Mangharam
John C. Duchi
Russ Tedrake
OffRL
132
27
0
09 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
67
0
0
07 Mar 2020
Diverse and Admissible Trajectory Forecasting through Multimodal Context
  Understanding
Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding
Seonguk Park
Gyubok Lee
Manoj Bhat
Jimin Seo
Minseok Kang
Jonathan M Francis
Ashwin R. Jadhav
Paul Pu Liang
Louis-Philippe Morency
216
120
0
06 Mar 2020
Gaussianization Flows
Gaussianization Flows
Chenlin Meng
Yang Song
Jiaming Song
Stefano Ermon
57
30
0
04 Mar 2020
Predictive Coding for Locally-Linear Control
Predictive Coding for Locally-Linear Control
Rui Shu
Tung D. Nguyen
Yinlam Chow
Tu Pham
Khoat Than
Mohammad Ghavamzadeh
Stefano Ermon
Hung Bui
OffRLBDL
104
25
0
02 Mar 2020
Batch Stationary Distribution Estimation
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
105
23
0
02 Mar 2020
RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
  Environments
RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments
Roberta Raileanu
Tim Rocktaschel
88
174
0
27 Feb 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov
  Chain Monte Carlo and Variational Inference
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
55
17
0
27 Feb 2020
Woodbury Transformations for Deep Generative Flows
Woodbury Transformations for Deep Generative Flows
You Lu
Bert Huang
85
16
0
27 Feb 2020
Gradient Boosted Normalizing Flows
Gradient Boosted Normalizing Flows
Robert Giaquinto
A. Banerjee
BDLDRL
31
1
0
27 Feb 2020
Composing Normalizing Flows for Inverse Problems
Composing Normalizing Flows for Inverse Problems
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
116
51
0
26 Feb 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
123
114
0
26 Feb 2020
Max-Affine Spline Insights into Deep Generative Networks
Max-Affine Spline Insights into Deep Generative Networks
Randall Balestriero
Sébastien Paris
Richard Baraniuk
DRLAI4CE
47
15
0
26 Feb 2020
On Feature Normalization and Data Augmentation
On Feature Normalization and Data Augmentation
Boyi Li
Felix Wu
Ser-Nam Lim
Serge J. Belongie
Kilian Q. Weinberger
56
137
0
25 Feb 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
104
52
0
24 Feb 2020
VFlow: More Expressive Generative Flows with Variational Data
  Augmentation
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
92
63
0
22 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
109
7
0
22 Feb 2020
Inductive Representation Learning on Temporal Graphs
Inductive Representation Learning on Temporal Graphs
Da Xu
Chuanwei Ruan
Evren Körpeoglu
Sushant Kumar
Kannan Achan
AI4CE
109
638
0
19 Feb 2020
Previous
123...363738...444546
Next