ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,268 papers shown
Title
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
75
39
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
91
28
0
11 Nov 2020
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
262
84
0
09 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
99
101
0
06 Nov 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CMLOODAI4CE
107
111
0
04 Nov 2020
Problems using deep generative models for probabilistic audio source
  separation
Problems using deep generative models for probabilistic audio source separation
M. Frank
Maximilian Ilse
DiffM
74
4
0
03 Nov 2020
Amortized Variational Deep Q Network
Amortized Variational Deep Q Network
Haotian Zhang
Yuhao Wang
Jianyong Sun
Zongben Xu
BDL
46
0
0
03 Nov 2020
Learning on Attribute-Missing Graphs
Learning on Attribute-Missing Graphs
Xu Chen
Siheng Chen
Jiangchao Yao
Huangjie Zheng
Ya Zhang
Ivor W Tsang
93
94
0
03 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Shaping Rewards for Reinforcement Learning with Imperfect Demonstrations
  using Generative Models
Shaping Rewards for Reinforcement Learning with Imperfect Demonstrations using Generative Models
Yuchen Wu
Melissa Mozifian
Florian Shkurti
90
21
0
02 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
52
5
0
29 Oct 2020
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
79
35
0
27 Oct 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
63
75
0
27 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDaMQAI4CE
143
9
0
26 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRLBDL
89
29
0
26 Oct 2020
ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
  Normalizing Flows
ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by Normalizing Flows
Julen Urain
M. Ginesi
Davide Tateo
Jan Peters
AI4CE
86
58
0
25 Oct 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDLMU
98
128
0
24 Oct 2020
Accelerating Reinforcement Learning with Learned Skill Priors
Accelerating Reinforcement Learning with Learned Skill Priors
Karl Pertsch
Youngwoon Lee
Joseph J. Lim
OffRLOnRL
114
241
0
22 Oct 2020
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
124
15
0
22 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
84
16
0
22 Oct 2020
NU-GAN: High resolution neural upsampling with GAN
NU-GAN: High resolution neural upsampling with GAN
Rithesh Kumar
Kundan Kumar
Vicki Anand
Yoshua Bengio
Aaron Courville
65
26
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
146
3
0
22 Oct 2020
Learning to Plan Optimally with Flow-based Motion Planner
Learning to Plan Optimally with Flow-based Motion Planner
Tin Lai
F. Ramos
72
7
0
21 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Probabilistic Character Motion Synthesis using a Hierarchical Deep
  Latent Variable Model
Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model
Saeed Ghorbani
C. Wloka
Ali Etemad
M. Brubaker
N. Troje
3DV
78
32
0
20 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDLVGen
183
47
0
19 Oct 2020
Orbital MCMC
Orbital MCMC
Kirill Neklyudov
Max Welling
66
7
0
15 Oct 2020
Deep Generative Modeling in Network Science with Applications to Public
  Policy Research
Deep Generative Modeling in Network Science with Applications to Public Policy Research
Gavin Hartnett
R. Vardavas
Lawrence Baker
Michael Chaykowski
C. Gibson
F. Girosi
David Kennedy
Osonde A. Osoba
26
2
0
15 Oct 2020
Deep Conditional Transformation Models
Deep Conditional Transformation Models
Philipp F. M. Baumann
Torsten Hothorn
David Rügamer
46
29
0
15 Oct 2020
Training Invertible Linear Layers through Rank-One Perturbations
Training Invertible Linear Layers through Rank-One Perturbations
Andreas Krämer
Jonas Köhler
Frank Noé
49
0
0
14 Oct 2020
Simulation-based inference methods for particle physics
Simulation-based inference methods for particle physics
Johann Brehmer
Kyle Cranmer
AI4CE
126
22
0
13 Oct 2020
Real-time parameter inference in reduced-order flame models with
  heteroscedastic Bayesian neural network ensembles
Real-time parameter inference in reduced-order flame models with heteroscedastic Bayesian neural network ensembles
Ushnish Sengupta
Maximilian L. Croci
M. Juniper
20
3
0
11 Oct 2020
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program
  Analysis
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis
Yicheng Luo
A. Filieri
Yuanshuo Zhou
55
5
0
10 Oct 2020
No MCMC for me: Amortized sampling for fast and stable training of
  energy-based models
No MCMC for me: Amortized sampling for fast and stable training of energy-based models
Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
120
72
0
08 Oct 2020
Information Theory Measures via Multidimensional Gaussianization
Information Theory Measures via Multidimensional Gaussianization
Valero Laparra
J. E. Johnson
Gustau Camps-Valls
Raúl Santos-Rodríguez
Jesús Malo
70
11
0
08 Oct 2020
Representing Point Clouds with Generative Conditional Invertible Flow
  Networks
Representing Point Clouds with Generative Conditional Invertible Flow Networks
Michal Stypulkowski
Kacper Kania
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
J. Chorowski
3DPC
97
4
0
07 Oct 2020
Automatic Backward Filtering Forward Guiding for Markov processes and
  graphical models
Automatic Backward Filtering Forward Guiding for Markov processes and graphical models
Frank van der Meulen
Moritz Schauer
88
12
0
07 Oct 2020
Learning from demonstration using products of experts: applications to
  manipulation and task prioritization
Learning from demonstration using products of experts: applications to manipulation and task prioritization
Emmanuel Pignat
João Silvério
Sylvain Calinon
46
18
0
07 Oct 2020
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Benoit Gaujac
Ilya Feige
David Barber
DiffMBDL
62
0
0
07 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDLAI4TS
127
12
0
07 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
334
7,531
0
06 Oct 2020
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
  Markov Chains
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains
Francisco J. R. Ruiz
Michalis K. Titsias
taylan. cemgil
Arnaud Doucet
BDLDRL
65
14
0
05 Oct 2020
Assisting the Adversary to Improve GAN Training
Assisting the Adversary to Improve GAN Training
Andreas Munk
William Harvey
Frank Wood
GAN
35
0
0
03 Oct 2020
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
56
1
0
02 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of
  Neural Text Classifiers
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAMLVLM
107
66
0
01 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based
  Models
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
116
124
0
01 Oct 2020
Geometric Disentanglement by Random Convex Polytopes
Geometric Disentanglement by Random Convex Polytopes
M. Joswig
M. Kaluba
Lukas Ruff
65
3
0
29 Sep 2020
Secure Data Sharing With Flow Model
Secure Data Sharing With Flow Model
Chenwei Wu
Chenzhuang Du
Yang Yuan
FedML
22
4
0
24 Sep 2020
Probabilistic Machine Learning for Healthcare
Probabilistic Machine Learning for Healthcare
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
74
56
0
23 Sep 2020
On the representation and learning of monotone triangular transport maps
On the representation and learning of monotone triangular transport maps
Ricardo Baptista
Youssef Marzouk
O. Zahm
103
49
0
22 Sep 2020
Previous
123...333435...444546
Next