ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08606
69
2

On the Calibration and Uncertainty with Pólya-Gamma Augmentation for Dialog Retrieval Models

15 March 2023
Tong Ye
Shijing Si
Jianzong Wang
Ning Cheng
Zhitao Li
Jing Xiao
ArXivPDFHTML
Abstract

Deep neural retrieval models have amply demonstrated their power but estimating the reliability of their predictions remains challenging. Most dialog response retrieval models output a single score for a response on how relevant it is to a given question. However, the bad calibration of deep neural network results in various uncertainty for the single score such that the unreliable predictions always misinform user decisions. To investigate these issues, we present an efficient calibration and uncertainty estimation framework PG-DRR for dialog response retrieval models which adds a Gaussian Process layer to a deterministic deep neural network and recovers conjugacy for tractable posterior inference by P\'{o}lya-Gamma augmentation. Finally, PG-DRR achieves the lowest empirical calibration error (ECE) in the in-domain datasets and the distributional shift task while keeping R10@1R_{10}@1R10​@1 and MAP performance.

View on arXiv
Comments on this paper