Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.05671
Cited By
v1
v2
v3
v4
v5
v6
v7 (latest)
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
19 March 2015
James Martens
Roger C. Grosse
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimizing Neural Networks with Kronecker-factored Approximate Curvature"
50 / 645 papers shown
Title
Task2Vec: Task Embedding for Meta-Learning
Alessandro Achille
Michael Lam
Rahul Tewari
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Stefano Soatto
Pietro Perona
SSL
83
317
0
10 Feb 2019
Meta-Curvature
Eunbyung Park
Junier B. Oliva
BDL
89
124
0
09 Feb 2019
Modular Block-diagonal Curvature Approximations for Feedforward Architectures
Felix Dangel
Stefan Harmeling
Philipp Hennig
88
11
0
05 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
86
3
0
04 Feb 2019
Predictive Uncertainty Quantification with Compound Density Networks
Agustinus Kristiadi
Sina Daubener
Asja Fischer
BDL
UQCV
83
17
0
04 Feb 2019
Improving SGD convergence by online linear regression of gradients in multiple statistically relevant directions
J. Duda
ODL
48
1
0
31 Jan 2019
Discretizing Continuous Action Space for On-Policy Optimization
Yunhao Tang
Shipra Agrawal
OffRL
107
124
0
29 Jan 2019
Large-Batch Training for LSTM and Beyond
Yang You
Jonathan Hseu
Chris Ying
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
65
91
0
24 Jan 2019
Hamiltonian Monte-Carlo for Orthogonal Matrices
V. Yanush
D. Kropotov
33
1
0
23 Jan 2019
On-Policy Trust Region Policy Optimisation with Replay Buffers
D. Kangin
N. Pugeault
OffRL
23
3
0
18 Jan 2019
The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space
Yann Ollivier
87
21
0
03 Jan 2019
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
Peter F. Schulam
Suchi Saria
OOD
101
104
0
02 Jan 2019
KF-LAX: Kronecker-factored curvature estimation for control variate optimization in reinforcement learning
Mohammad Firouzi
28
0
0
11 Dec 2018
Natural Option Critic
Saket Tiwari
Philip S. Thomas
57
22
0
04 Dec 2018
Eigenvalue Corrected Noisy Natural Gradient
Juhan Bae
Guodong Zhang
Roger C. Grosse
100
18
0
30 Nov 2018
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Rio Yokota
Satoshi Matsuoka
ODL
120
95
0
29 Nov 2018
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
67
40
0
19 Nov 2018
Natural Environment Benchmarks for Reinforcement Learning
Amy Zhang
Yuxin Wu
Joelle Pineau
OffRL
OOD
69
69
0
14 Nov 2018
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
129
409
0
08 Nov 2018
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger C. Grosse
75
260
0
29 Oct 2018
Information Geometry of Orthogonal Initializations and Training
Piotr A. Sokól
Il-Su Park
AI4CE
136
17
0
09 Oct 2018
Dynamics and Reachability of Learning Tasks
Alessandro Achille
G. Mbeng
Stefano Soatto
19
7
0
04 Oct 2018
Directional Analysis of Stochastic Gradient Descent via von Mises-Fisher Distributions in Deep learning
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
68
8
0
29 Sep 2018
Boosting Trust Region Policy Optimization by Normalizing Flows Policy
Yunhao Tang
Shipra Agrawal
TPM
110
31
0
27 Sep 2018
Preconditioner on Matrix Lie Group for SGD
Xi-Lin Li
51
16
0
26 Sep 2018
A Coordinate-Free Construction of Scalable Natural Gradient
Kevin Luk
Roger C. Grosse
56
11
0
30 Aug 2018
Multi-Agent Generative Adversarial Imitation Learning
Jiaming Song
Hongyu Ren
Dorsa Sadigh
Stefano Ermon
GAN
65
224
0
26 Jul 2018
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
Laurence Aitchison
ODL
138
21
0
19 Jul 2018
Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration
Soham De
Anirbit Mukherjee
Enayat Ullah
79
101
0
18 Jul 2018
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
68
7
0
14 Jul 2018
The decoupled extended Kalman filter for dynamic exponential-family factorization models
C. Gomez-Uribe
Brian Karrer
89
6
0
26 Jun 2018
Stochastic natural gradient descent draws posterior samples in function space
Samuel L. Smith
Daniel Duckworth
Semon Rezchikov
Quoc V. Le
Jascha Narain Sohl-Dickstein
BDL
85
6
0
25 Jun 2018
Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis
Thomas George
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
ODL
115
156
0
11 Jun 2018
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
309
504
0
11 Jun 2018
Efficient Full-Matrix Adaptive Regularization
Naman Agarwal
Brian Bullins
Xinyi Chen
Elad Hazan
Karan Singh
Cyril Zhang
Yi Zhang
63
21
0
08 Jun 2018
Scalable Natural Gradient Langevin Dynamics in Practice
Henri Palacci
H. Hess
BDL
38
8
0
07 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
201
146
0
04 Jun 2018
Meta-Learning with Hessian-Free Approach in Deep Neural Nets Training
Boyu Chen
Wenlian Lu
Ernest Fokoue
52
1
0
22 May 2018
Measuring and regularizing networks in function space
Ari S. Benjamin
David Rolnick
Konrad Paul Kording
82
140
0
21 May 2018
Small steps and giant leaps: Minimal Newton solvers for Deep Learning
João F. Henriques
Sébastien Ehrhardt
Samuel Albanie
Andrea Vedaldi
ODL
57
22
0
21 May 2018
Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting
H. Ritter
Aleksandar Botev
David Barber
BDL
CLL
106
335
0
20 May 2018
Block Mean Approximation for Efficient Second Order Optimization
Yao Lu
Mehrtash Harandi
Leonid Sigal
Razvan Pascanu
ODL
65
4
0
16 Apr 2018
Aggregated Momentum: Stability Through Passive Damping
James Lucas
Shengyang Sun
R. Zemel
Roger C. Grosse
97
68
0
01 Apr 2018
Task Agnostic Continual Learning Using Online Variational Bayes
Chen Zeno
Itay Golan
Elad Hoffer
Daniel Soudry
CLL
FedML
BDL
107
112
0
27 Mar 2018
Online Second Order Methods for Non-Convex Stochastic Optimizations
Xi-Lin Li
OffRL
ODL
41
4
0
26 Mar 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
98
120
0
15 Mar 2018
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Yuhuai Wu
Mengye Ren
Renjie Liao
Roger C. Grosse
115
138
0
06 Mar 2018
Accelerating Natural Gradient with Higher-Order Invariance
Yang Song
Jiaming Song
Stefano Ermon
74
23
0
04 Mar 2018
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation
Huishuai Zhang
Wei-neng Chen
Tie-Yan Liu
29
5
0
27 Feb 2018
Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta
Tomer Koren
Y. Singer
ODL
115
226
0
26 Feb 2018
Previous
1
2
3
...
11
12
13
Next