ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01813
14
11

Modular Block-diagonal Curvature Approximations for Feedforward Architectures

5 February 2019
Felix Dangel
Stefan Harmeling
Philipp Hennig
ArXivPDFHTML
Abstract

We propose a modular extension of backpropagation for the computation of block-diagonal approximations to various curvature matrices of the training objective (in particular, the Hessian, generalized Gauss-Newton, and positive-curvature Hessian). The approach reduces the otherwise tedious manual derivation of these matrices into local modules, and is easy to integrate into existing machine learning libraries. Moreover, we develop a compact notation derived from matrix differential calculus. We outline different strategies applicable to our method. They subsume recently-proposed block-diagonal approximations as special cases, and are extended to convolutional neural networks in this work.

View on arXiv
Comments on this paper