ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.10340
9
11

A Coordinate-Free Construction of Scalable Natural Gradient

30 August 2018
Kevin Luk
Roger C. Grosse
ArXivPDFHTML
Abstract

Most neural networks are trained using first-order optimization methods, which are sensitive to the parameterization of the model. Natural gradient descent is invariant to smooth reparameterizations because it is defined in a coordinate-free way, but tractable approximations are typically defined in terms of coordinate systems, and hence may lose the invariance properties. We analyze the invariance properties of the Kronecker-Factored Approximate Curvature (K-FAC) algorithm by constructing the algorithm in a coordinate-free way. We explicitly construct a Riemannian metric under which the natural gradient matches the K-FAC update; invariance to affine transformations of the activations follows immediately. We extend our framework to analyze the invariance properties of K-FAC applied to convolutional networks and recurrent neural networks, as well as metrics other than the usual Fisher metric.

View on arXiv
Comments on this paper