ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.03585
  4. Cited By
Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

12 March 2015
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
    SyDa
    DiffM
ArXivPDFHTML

Papers citing "Deep Unsupervised Learning using Nonequilibrium Thermodynamics"

45 / 1,445 papers shown
Title
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee
Seungu Han
DiffM
29
67
0
06 Apr 2021
Symbolic Music Generation with Diffusion Models
Symbolic Music Generation with Diffusion Models
Gautam Mittal
Jesse Engel
Curtis Hawthorne
Ian Simon
MGen
DiffM
57
190
0
30 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
485
0
08 Mar 2021
Learning to Generate 3D Shapes with Generative Cellular Automata
Learning to Generate 3D Shapes with Generative Cellular Automata
Dongsu Zhang
Changwoon Choi
Jeonghwan Kim
Y. Kim
23
24
0
06 Mar 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
60
3,549
0
18 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
396
0
10 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
627
0
22 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
243
0
09 Jan 2021
Improved Contrastive Divergence Training of Energy Based Models
Improved Contrastive Divergence Training of Energy Based Models
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
41
139
0
02 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
90
6,126
0
26 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,996
0
06 Oct 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
34
1,397
0
21 Sep 2020
Adversarial score matching and improved sampling for image generation
Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau
Remi Piche-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
DiffM
35
125
0
11 Sep 2020
Thermodynamic Machine Learning through Maximum Work Production
Thermodynamic Machine Learning through Maximum Work Production
A. B. Boyd
James P. Crutchfield
M. Gu
AI4CE
27
16
0
27 Jun 2020
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered
  Face Images
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Stephan J. Garbin
Marek Kowalski
Matthew W. Johnson
Jamie Shotton
3DH
33
9
0
26 Jun 2020
Locally Masked Convolution for Autoregressive Models
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffM
OffRL
39
31
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,084
0
19 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
21
1
0
11 Jun 2020
Gaussian Gated Linear Networks
Gaussian Gated Linear Networks
David Budden
Adam H. Marblestone
Eren Sezener
Tor Lattimore
Greg Wayne
J. Veness
BDL
AI4CE
27
12
0
10 Jun 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature
  Survey
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
25
176
0
21 Apr 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Hidden Unit Specialization in Layered Neural Networks: ReLU vs.
  Sigmoidal Activation
Hidden Unit Specialization in Layered Neural Networks: ReLU vs. Sigmoidal Activation
Elisa Oostwal
Michiel Straat
Michael Biehl
MLT
58
55
0
16 Oct 2019
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
47
192
0
02 Oct 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
28
62
0
26 Sep 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
19
145
0
06 Jun 2018
Transportation analysis of denoising autoencoders: a novel method for
  analyzing deep neural networks
Transportation analysis of denoising autoencoders: a novel method for analyzing deep neural networks
Sho Sonoda
Noboru Murata
16
8
0
12 Dec 2017
Variational Walkback: Learning a Transition Operator as a Stochastic
  Recurrent Net
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
35
55
0
07 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
46
57
0
04 Sep 2017
Optimizing the Latent Space of Generative Networks
Optimizing the Latent Space of Generative Networks
Piotr Bojanowski
Armand Joulin
David Lopez-Paz
Arthur Szlam
GAN
33
412
0
18 Jul 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
19
932
0
19 Jan 2017
An Architecture for Deep, Hierarchical Generative Models
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
AI4CE
BDL
33
53
0
08 Dec 2016
Semi-Supervised Learning with Context-Conditional Generative Adversarial
  Networks
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Emily L. Denton
Sam Gross
Rob Fergus
GAN
27
150
0
19 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
59
1,001
0
07 Nov 2016
Coupled Generative Adversarial Networks
Coupled Generative Adversarial Networks
Ming Liu
Oncel Tuzel
OOD
GAN
40
1,622
0
24 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
55
1,798
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
97
3,648
0
26 May 2016
Pixel-Level Domain Transfer
Pixel-Level Domain Transfer
Donggeun Yoo
Namil Kim
Sunggyun Park
Anthony S. Paek
In So Kweon
GAN
20
315
0
24 Mar 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,553
0
25 Jan 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
131
13,936
0
19 Nov 2015
Super-Resolution with Deep Convolutional Sufficient Statistics
Super-Resolution with Deep Convolutional Sufficient Statistics
Joan Bruna
Pablo Sprechmann
Yann LeCun
SupR
28
323
0
18 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
29
1,132
0
05 Nov 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
30
57
0
10 Jun 2015
Automatic Relevance Determination For Deep Generative Models
Automatic Relevance Determination For Deep Generative Models
Theofanis Karaletsos
Gunnar Rätsch
33
8
0
28 May 2015
Previous
123...272829