ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.03585
  4. Cited By
Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

12 March 2015
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
    SyDa
    DiffM
ArXivPDFHTML

Papers citing "Deep Unsupervised Learning using Nonequilibrium Thermodynamics"

24 / 1,374 papers shown
Title
Deep Learning for Time Series Forecasting: Tutorial and Literature
  Survey
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
25
176
0
21 Apr 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Hidden Unit Specialization in Layered Neural Networks: ReLU vs.
  Sigmoidal Activation
Hidden Unit Specialization in Layered Neural Networks: ReLU vs. Sigmoidal Activation
Elisa Oostwal
Michiel Straat
Michael Biehl
MLT
56
55
0
16 Oct 2019
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
44
191
0
02 Oct 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
12
62
0
26 Sep 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
19
145
0
06 Jun 2018
Transportation analysis of denoising autoencoders: a novel method for
  analyzing deep neural networks
Transportation analysis of denoising autoencoders: a novel method for analyzing deep neural networks
Sho Sonoda
Noboru Murata
16
8
0
12 Dec 2017
Variational Walkback: Learning a Transition Operator as a Stochastic
  Recurrent Net
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
35
55
0
07 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
46
57
0
04 Sep 2017
Optimizing the Latent Space of Generative Networks
Optimizing the Latent Space of Generative Networks
Piotr Bojanowski
Armand Joulin
David Lopez-Paz
Arthur Szlam
GAN
27
412
0
18 Jul 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
19
931
0
19 Jan 2017
An Architecture for Deep, Hierarchical Generative Models
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
AI4CE
BDL
33
53
0
08 Dec 2016
Semi-Supervised Learning with Context-Conditional Generative Adversarial
  Networks
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Emily L. Denton
Sam Gross
Rob Fergus
GAN
27
150
0
19 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
59
1,001
0
07 Nov 2016
Coupled Generative Adversarial Networks
Coupled Generative Adversarial Networks
Ming Liu
Oncel Tuzel
OOD
GAN
22
1,622
0
24 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
55
1,797
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
97
3,647
0
26 May 2016
Pixel-Level Domain Transfer
Pixel-Level Domain Transfer
Donggeun Yoo
Namil Kim
Sunggyun Park
Anthony S. Paek
In So Kweon
GAN
14
315
0
24 Mar 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
Super-Resolution with Deep Convolutional Sufficient Statistics
Super-Resolution with Deep Convolutional Sufficient Statistics
Joan Bruna
Pablo Sprechmann
Yann LeCun
SupR
25
323
0
18 Nov 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
22
57
0
10 Jun 2015
Automatic Relevance Determination For Deep Generative Models
Automatic Relevance Determination For Deep Generative Models
Theofanis Karaletsos
Gunnar Rätsch
33
8
0
28 May 2015
Previous
123...262728