ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.03585
  4. Cited By
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
v1v2v3v4v5v6v7v8 (latest)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

12 March 2015
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
    SyDaDiffM
ArXiv (abs)PDFHTML

Papers citing "Deep Unsupervised Learning using Nonequilibrium Thermodynamics"

50 / 4,616 papers shown
Title
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered
  Face Images
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Stephan J. Garbin
Marek Kowalski
Matthew W. Johnson
Jamie Shotton
3DH
151
9
0
26 Jun 2020
Locally Masked Convolution for Autoregressive Models
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffMOffRL
120
32
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
1.0K
18,532
0
19 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
54
1
0
11 Jun 2020
Gaussian Gated Linear Networks
Gaussian Gated Linear Networks
David Budden
Adam H. Marblestone
Eren Sezener
Tor Lattimore
Greg Wayne
J. Veness
BDLAI4CE
67
12
0
10 Jun 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature
  Survey
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
99
201
0
21 Apr 2020
Training Deep Energy-Based Models with f-Divergence Minimization
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
238
44
0
06 Mar 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
156
186
0
16 Feb 2020
Learning Generative Models using Denoising Density Estimators
Learning Generative Models using Denoising Density Estimators
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
DiffM
108
16
0
08 Jan 2020
Hidden Unit Specialization in Layered Neural Networks: ReLU vs.
  Sigmoidal Activation
Hidden Unit Specialization in Layered Neural Networks: ReLU vs. Sigmoidal Activation
Elisa Oostwal
Michiel Straat
Michael Biehl
MLT
92
56
0
16 Oct 2019
Regularising Deep Networks with Deep Generative Models
Regularising Deep Networks with Deep Generative Models
M. Willetts
A. Camuto
Stephen J. Roberts
Chris Holmes
UQCV
22
0
0
25 Sep 2019
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPMMedIm
100
58
0
25 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
273
3,972
0
12 Jul 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
235
2,385
0
06 Jun 2019
Variational Auto-Decoder: A Method for Neural Generative Modeling from
  Incomplete Data
Variational Auto-Decoder: A Method for Neural Generative Modeling from Incomplete Data
Amir Zadeh
Y. Lim
Paul Pu Liang
Louis-Philippe Morency
DRL
67
16
0
03 Mar 2019
Learning about an exponential amount of conditional distributions
Learning about an exponential amount of conditional distributions
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David Lopez-Paz
BDLSSL
66
28
0
22 Feb 2019
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
64
39
0
19 Nov 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
137
201
0
02 Oct 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
97
63
0
26 Sep 2018
Generative Adversarial Networks with Decoder-Encoder Output Noise
Generative Adversarial Networks with Decoder-Encoder Output Noise
G. Zhong
Wei Gao
Yongbin Liu
Youzhao Yang
GAN
68
7
0
11 Jul 2018
Mixed batches and symmetric discriminators for GAN training
Mixed batches and symmetric discriminators for GAN training
Thomas Lucas
Corentin Tallec
Jakob Verbeek
Yann Ollivier
58
37
0
19 Jun 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDLDRL
94
147
0
06 Jun 2018
Transportation analysis of denoising autoencoders: a novel method for
  analyzing deep neural networks
Transportation analysis of denoising autoencoders: a novel method for analyzing deep neural networks
Sho Sonoda
Noboru Murata
56
7
0
12 Dec 2017
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
Alex Lamb
R. Devon Hjelm
Yaroslav Ganin
Joseph Paul Cohen
Aaron Courville
Yoshua Bengio
GAN
72
13
0
12 Dec 2017
Unsupervised Multi-Domain Image Translation with Domain-Specific
  Encoders/Decoders
Unsupervised Multi-Domain Image Translation with Domain-Specific Encoders/Decoders
Le Hui
Xiang Li
Jiaxin Chen
Hongliang He
Chen Gong
Jian Yang
61
43
0
06 Dec 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
87
130
0
25 Nov 2017
Learning Markov Chain in Unordered Dataset
Learning Markov Chain in Unordered Dataset
Yao-Hung Hubert Tsai
Haiying Zhao
Ruslan Salakhutdinov
Nebojsa Jojic
CML
81
1
0
08 Nov 2017
Variational Walkback: Learning a Transition Operator as a Stochastic
  Recurrent Net
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
151
55
0
07 Nov 2017
Image Disguise based on Generative Model
Image Disguise based on Generative Model
X. Duan
Haoxian Song
E. Zhang
Jingjing Liu
DiffM
37
1
0
21 Oct 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
129
57
0
04 Sep 2017
Optimizing the Latent Space of Generative Networks
Optimizing the Latent Space of Generative Networks
Piotr Bojanowski
Armand Joulin
David Lopez-Paz
Arthur Szlam
GAN
121
417
0
18 Jul 2017
Inference in Deep Networks in High Dimensions
Inference in Deep Networks in High Dimensions
A. Fletcher
S. Rangan
BDL
134
69
0
20 Jun 2017
Sliced Wasserstein Generative Models
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
Danda Pani Paudel
Luc Van Gool
DiffM
54
0
0
08 Jun 2017
Annealed Generative Adversarial Networks
Annealed Generative Adversarial Networks
Arash Mehrjou
Bernhard Schölkopf
Saeed Saremi
GAN
56
13
0
21 May 2017
Learning to Generate Samples from Noise through Infusion Training
Learning to Generate Samples from Noise through Infusion Training
Florian Bordes
S. Honari
Pascal Vincent
GANDiffM
92
44
0
20 Mar 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDLGANOODDRL
89
74
0
27 Feb 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
148
945
0
19 Jan 2017
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
Alexander Kolesnikov
Christoph H. Lampert
GAN
71
3
0
24 Dec 2016
An Architecture for Deep, Hierarchical Generative Models
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
AI4CEBDL
96
53
0
08 Dec 2016
Semi-Supervised Learning with Context-Conditional Generative Adversarial
  Networks
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Emily L. Denton
Sam Gross
Rob Fergus
GAN
90
152
0
19 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
217
676
0
08 Nov 2016
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks
Luke Metz
Ben Poole
David Pfau
Jascha Narain Sohl-Dickstein
GAN
173
1,007
0
07 Nov 2016
Tensorial Mixture Models
Tensorial Mixture Models
Or Sharir
Ronen Tamari
Nadav Cohen
Amnon Shashua
TPM
90
25
0
13 Oct 2016
Coupled Generative Adversarial Networks
Coupled Generative Adversarial Networks
Ming-Yuan Liu
Oncel Tuzel
OODGAN
142
1,631
0
24 Jun 2016
Conditional Image Generation with PixelCNN Decoders
Conditional Image Generation with PixelCNN Decoders
Aaron van den Oord
Nal Kalchbrenner
Oriol Vinyals
L. Espeholt
Alex Graves
Koray Kavukcuoglu
VLM
298
2,522
0
16 Jun 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
162
1,828
0
15 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
205
1,659
0
02 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
279
3,731
0
26 May 2016
Transport Analysis of Infinitely Deep Neural Network
Transport Analysis of Infinitely Deep Neural Network
Sho Sonoda
Noboru Murata
36
4
0
10 May 2016
Towards Conceptual Compression
Towards Conceptual Compression
Karol Gregor
F. Besse
Danilo Jimenez Rezende
Ivo Danihelka
Daan Wierstra
DRLOCLSSLBDL
101
248
0
29 Apr 2016
Previous
123...919293
Next