Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05767
Cited By
Automatic differentiation in machine learning: a survey
20 February 2015
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic differentiation in machine learning: a survey"
50 / 277 papers shown
Title
A Common Interface for Automatic Differentiation
Guillaume Dalle
Adrian Hill
PINN
VLM
47
0
0
08 May 2025
Learning and Transferring Physical Models through Derivatives
Alessandro Trenta
Andrea Cossu
Davide Bacciu
AI4CE
34
0
0
02 May 2025
Smooth Integer Encoding via Integral Balance
Stanislav Semenov
105
1
0
28 Apr 2025
Coherence-based Approximate Derivatives via Web of Affine Spaces Optimization
Daniel Rakita
Chen Liang
Qian Wang
24
0
0
26 Apr 2025
Data Cleansing for GANs
Naoyuki Terashita
Hiroki Ohashi
Satoshi Hara
AAML
56
0
0
01 Apr 2025
Solving 2-D Helmholtz equation in the rectangular, circular, and elliptical domains using neural networks
D. Veerababu
Prasanta K. Ghosh
68
0
0
26 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Unraveling particle dark matter with Physics-Informed Neural Networks
M.P. Bento
H.B. Câmara
J.F. Seabra
55
0
0
24 Feb 2025
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
62
0
0
20 Feb 2025
Kolmogorov-Arnold Fourier Networks
Jusheng Zhang
Yijia Fan
Kaitong Cai
Keze Wang
63
0
0
09 Feb 2025
Physics-Grounded Differentiable Simulation for Soft Growing Robots
Lucas Chen
Yitian Gao
Sicheng Wang
Francesco Fuentes
Laura H. Blumenschein
Zachary Kingston
38
0
0
29 Jan 2025
Optimizing Automatic Differentiation with Deep Reinforcement Learning
Jamie Lohoff
Emre Neftci
53
1
0
28 Jan 2025
The Finite Element Neural Network Method: One Dimensional Study
Mohammed Abda
Elsa Piollet
Christopher Blake
Frédérick P. Gosselin
61
0
0
21 Jan 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
64
1
0
14 Dec 2024
Influence functions and regularity tangents for efficient active learning
Frederik Eaton
TDI
89
0
0
22 Nov 2024
Efficient, Accurate and Stable Gradients for Neural ODEs
Sam McCallum
James Foster
32
4
0
15 Oct 2024
Scientific Machine Learning Seismology
Tomohisa Okazaki
PINN
AI4CE
46
0
0
27 Sep 2024
Cartan moving frames and the data manifolds
Eliot Tron
Rita Fioresi
Nicolas Couellan
Stéphane Puechmorel
51
1
0
18 Sep 2024
Shadow Program Inversion with Differentiable Planning: A Framework for Unified Robot Program Parameter and Trajectory Optimization
Benjamin Alt
Claudius Kienle
Darko Katic
Rainer Jäkel
Michael Beetz
49
1
0
13 Sep 2024
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
23
0
0
21 Aug 2024
The Energy Cost of Artificial Intelligence Lifecycle in Communication Networks
Shih-Kai Chou
Jernej Hribar
William Alberto Cruz Castañeda
M. Mohorčič
Carolina Fortuna
48
1
0
01 Aug 2024
Trade-off between Gradient Measurement Efficiency and Expressivity in Deep Quantum Neural Networks
Koki Chinzei
Shinichiro Yamano
Quoc-Hoan Tran
Yasuhiro Endo
H. Oshima
50
1
0
26 Jun 2024
BrowNNe: Brownian Nonlocal Neurons & Activation Functions
Sriram Nagaraj
Truman Hickok
21
0
0
21 Jun 2024
Physics-informed neural networks for parameter learning of wildfire spreading
K. Vogiatzoglou
C. Papadimitriou
V. Bontozoglou
Konstantinos Ampountolas
21
1
0
20 Jun 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
31
3
0
29 May 2024
Deterministic and statistical calibration of constitutive models from full-field data with parametric physics-informed neural networks
D. Anton
Jendrik-Alexander Tröger
Henning Wessels
Ulrich Römer
Alexander Henkes
Stefan Hartmann
AI4CE
31
4
0
28 May 2024
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
26
2
0
23 May 2024
Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework
Jesus Gonzalez-Sieiro
David Pardo
Vincenzo Nava
V. M. Calo
Markus Towara
AI4CE
32
1
0
13 May 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
38
1
0
09 May 2024
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
31
1
0
29 Apr 2024
Backpropagation through space, time, and the brain
B. Ellenberger
Paul Haider
Jakob Jordan
Kevin Max
Ismael Jaras
Laura Kriener
Federico Benitez
Mihai A. Petrovici
123
8
0
25 Mar 2024
Physics-informed Deep Learning to Solve Three-dimensional Terzaghi Consolidation Equation: Forward and Inverse Problems
Biao Yuan
Ana Heitor
He Wang
Xiaohui Chen
AI4CE
PINN
29
1
0
08 Jan 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
Eduardo Sebastián
T. Duong
Nikolay A. Atanasov
Eduardo Montijano
C. Sagüés
23
2
0
30 Dec 2023
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
25
6
0
28 Dec 2023
Machine learning and domain decomposition methods -- a survey
A. Klawonn
M. Lanser
J. Weber
AI4CE
16
7
0
21 Dec 2023
What Can AutoML Do For Continual Learning?
Mert Kilickaya
Joaquin Vanschoren
28
1
0
20 Nov 2023
Solution of FPK Equation for Stochastic Dynamics Subjected to Additive Gaussian Noise via Deep Learning Approach
Amir H. Khodabakhsh
S. Pourtakdoust
11
6
0
08 Nov 2023
Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
José Daniel Viqueira
Daniel Faílde
M. M. Juane
Andrés Gómez
David Mera
26
5
0
31 Oct 2023
RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial Data Manipulation
Dzung Pham
Shreyas Kulkarni
Amir Houmansadr
25
0
0
29 Oct 2023
Randomized Forward Mode of Automatic Differentiation For Optimization Algorithms
Khemraj Shukla
Yeonjong Shin
ODL
18
4
0
22 Oct 2023
A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems
Yuan-Heng Wang
Hoshin V. Gupta
AI4CE
30
6
0
12 Oct 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
26
76
0
01 Oct 2023
Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics
Michael Kagan
Lukas Heinrich
24
9
0
31 Aug 2023
Massively Parallel Continuous Local Search for Hybrid SAT Solving on GPUs
Yunuo Cen
Zhiwei Zhang
Xuanyao Fong
14
1
0
29 Aug 2023
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
24
2
0
16 Aug 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Jayanta Mandi
James Kotary
Senne Berden
Maxime Mulamba
Víctor Bucarey
Tias Guns
Ferdinando Fioretto
AI4CE
24
54
0
25 Jul 2023
PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
R. Gao
Yufeng Wang
Min Yang
Chuanjun Chen
GAN
26
2
0
21 Jul 2023
1
2
3
4
5
6
Next