Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05767
Cited By
Automatic differentiation in machine learning: a survey
20 February 2015
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic differentiation in machine learning: a survey"
50 / 343 papers shown
Title
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
19
80
0
18 Dec 2020
An AI-Assisted Design Method for Topology Optimization Without Pre-Optimized Training Data
A. Halle
L. Campanile
A. Hasse
AI4CE
16
10
0
11 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Local Extreme Learning Machines and Domain Decomposition for Solving Linear and Nonlinear Partial Differential Equations
S. Dong
Zongwei Li
28
164
0
04 Dec 2020
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
S. Niaki
E. Haghighat
Trevor Campbell
Xinglong Li
R. Vaziri
AI4CE
13
203
0
27 Nov 2020
Bridging Physics-based and Data-driven modeling for Learning Dynamical Systems
Rui Wang
Danielle C. Maddix
Christos Faloutsos
Bernie Wang
Rose Yu
OOD
AI4CE
27
51
0
20 Nov 2020
Trajectory Prediction in Autonomous Driving with a Lane Heading Auxiliary Loss
Ross Greer
Nachiket Deo
Mohan M. Trivedi
35
46
0
12 Nov 2020
Brain-Inspired Learning on Neuromorphic Substrates
Friedemann Zenke
Emre Neftci
38
87
0
22 Oct 2020
Energy-based error bound of physics-informed neural network solutions in elasticity
Mengwu Guo
E. Haghighat
PINN
51
28
0
18 Oct 2020
Random Coordinate Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
16
11
0
03 Oct 2020
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
43
16
0
28 Sep 2020
BOML: A Modularized Bilevel Optimization Library in Python for Meta Learning
Yaohua Liu
Risheng Liu
25
10
0
28 Sep 2020
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
35
120
0
17 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
28
444
0
07 Sep 2020
AIPerf: Automated machine learning as an AI-HPC benchmark
Zhixiang Ren
Yongheng Liu
Tianhui Shi
Lei Xie
Yue Zhou
Jidong Zhai
Youhui Zhang
Yunquan Zhang
Wenguang Chen
27
22
0
17 Aug 2020
Unnormalized Variational Bayes
Saeed Saremi
BDL
86
1
0
29 Jul 2020
Incremental Without Replacement Sampling in Nonconvex Optimization
Edouard Pauwels
38
5
0
15 Jul 2020
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
48
193
0
29 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
Approximate Cross-Validation for Structured Models
S. Ghosh
William T. Stephenson
Tin D. Nguyen
Sameer K. Deshpande
Tamara Broderick
16
15
0
23 Jun 2020
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Thomas Asikis
Lucas Böttcher
Nino Antulov-Fantulin
33
43
0
17 Jun 2020
Dynamic Tensor Rematerialization
Marisa Kirisame
Steven Lyubomirsky
Altan Haan
Jennifer Brennan
Mike He
Jared Roesch
Tianqi Chen
Zachary Tatlock
27
93
0
17 Jun 2020
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
28
40
0
12 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
24
224
0
11 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
222
0
10 Jun 2020
SALD: Sign Agnostic Learning with Derivatives
Matan Atzmon
Y. Lipman
24
143
0
09 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
30
118
0
07 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
27
80
0
04 Jun 2020
On the Promise of the Stochastic Generalized Gauss-Newton Method for Training DNNs
Matilde Gargiani
Andrea Zanelli
Moritz Diehl
Frank Hutter
ODL
4
18
0
03 Jun 2020
Transfer learning based multi-fidelity physics informed deep neural network
S. Chakraborty
PINN
OOD
AI4CE
12
163
0
19 May 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
SciANN: A Keras/Tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
E. Haghighat
R. Juanes
AI4CE
PINN
17
21
0
11 May 2020
Automatic Differentiation in ROOT
V. Vassilev
A. Efremov
O. Shadura
PINN
19
5
0
09 Apr 2020
A deep learning framework for solution and discovery in solid mechanics
E. Haghighat
M. Raissi
A. Moure
H. Gómez
R. Juanes
AI4CE
PINN
11
56
0
14 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
34
95
0
06 Feb 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
35
291
0
13 Jan 2020
Trend to Equilibrium for the Kinetic Fokker-Planck Equation via the Neural Network Approach
H. Hwang
Jin Woo Jang
Hyeontae Jo
Jae Yong Lee
188
36
0
22 Nov 2019
A Simple Differentiable Programming Language
M. Abadi
G. Plotkin
19
65
0
11 Nov 2019
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
28
212
0
09 Nov 2019
Deep Learning of Subsurface Flow via Theory-guided Neural Network
Nanzhe Wang
Dongxiao Zhang
Haibin Chang
Heng Li
AI4CE
30
226
0
24 Oct 2019
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
32
30
0
22 Oct 2019
Uncertainty-aware Sensitivity Analysis Using Rényi Divergences
Topi Paananen
Michael Riis Andersen
Aki Vehtari
27
3
0
17 Oct 2019
Backpropagation in the Simply Typed Lambda-calculus with Linear Negation
Aloïs Brunel
Damiano Mazza
Michele Pagani
22
46
0
27 Sep 2019
Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks
Ameya Dilip Jagtap
Kenji Kawaguchi
George Karniadakis
ODL
29
85
0
25 Sep 2019
Machine Discovery of Partial Differential Equations from Spatiotemporal Data
Ye Yuan
Junlin Li
Liang Li
Frank Jiang
Xiuchuan Tang
...
J. Gonçalves
H. Voss
Xiuting Li
J. Kurths
Han Ding
AI4CE
17
9
0
15 Sep 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
24
844
0
10 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
22
69
0
13 Aug 2019
Distributed physics informed neural network for data-efficient solution to partial differential equations
Vikas Dwivedi
N. Parashar
Balaji Srinivasan
PINN
21
81
0
21 Jul 2019
Previous
1
2
3
4
5
6
7
Next