ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03509
  4. Cited By
MADE: Masked Autoencoder for Distribution Estimation

MADE: Masked Autoencoder for Distribution Estimation

12 February 2015
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
    OOD
    SyDa
    UQCV
ArXivPDFHTML

Papers citing "MADE: Masked Autoencoder for Distribution Estimation"

50 / 185 papers shown
Title
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
19
19
0
27 Aug 2020
Autoregressive Unsupervised Image Segmentation
Autoregressive Unsupervised Image Segmentation
Yassine Ouali
C´eline Hudelot
Myriam Tami
SSL
35
86
0
16 Jul 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
26
87
0
06 Jul 2020
Locally Masked Convolution for Autoregressive Models
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffM
OffRL
39
31
0
22 Jun 2020
Set Distribution Networks: a Generative Model for Sets of Images
Set Distribution Networks: a Generative Model for Sets of Images
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Carlos Guestrin
J. Susskind
GAN
32
2
0
18 Jun 2020
Constraining Variational Inference with Geometric Jensen-Shannon
  Divergence
Constraining Variational Inference with Geometric Jensen-Shannon Divergence
J. Deasy
Nikola Simidjievski
Pietro Lio
DRL
36
29
0
18 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
23
79
0
18 Jun 2020
NeuroCard: One Cardinality Estimator for All Tables
NeuroCard: One Cardinality Estimator for All Tables
Zongheng Yang
Amog Kamsetty
Sifei Luan
Eric Liang
Yan Duan
Xi Chen
Ion Stoica
30
101
0
15 Jun 2020
Latent Transformations for Discrete-Data Normalising Flows
Latent Transformations for Discrete-Data Normalising Flows
Rob D. Hesselink
Wilker Aziz
DRL
21
1
0
11 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Towards Unsupervised Language Understanding and Generation by Joint Dual
  Learning
Towards Unsupervised Language Understanding and Generation by Joint Dual Learning
Shang-Yu Su
Chao-Wei Huang
Yun-Nung Chen
22
26
0
30 Apr 2020
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
22
30
0
06 Apr 2020
Weakly Supervised 3D Human Pose and Shape Reconstruction with
  Normalizing Flows
Weakly Supervised 3D Human Pose and Shape Reconstruction with Normalizing Flows
Andrei Zanfir
Eduard Gabriel Bazavan
Hongyi Xu
Bill Freeman
Rahul Sukthankar
C. Sminchisescu
3DH
31
133
0
23 Mar 2020
Predictive Sampling with Forecasting Autoregressive Models
Predictive Sampling with Forecasting Autoregressive Models
Auke Wiggers
Emiel Hoogeboom
BDL
33
16
0
23 Feb 2020
Gravitational-wave parameter estimation with autoregressive neural
  network flows
Gravitational-wave parameter estimation with autoregressive neural network flows
Stephen R. Green
C. Simpson
J. Gair
BDL
88
87
0
18 Feb 2020
GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
  Black Box Constraint Satisfaction
GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal Black Box Constraint Satisfaction
Kourosh Hakhamaneshi
Keertana Settaluri
Pieter Abbeel
Vladimir M. Stojanović
11
1
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
59
176
0
16 Feb 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
55
117
0
10 Feb 2020
Accelerating Feedforward Computation via Parallel Nonlinear Equation
  Solving
Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving
Yang Song
Chenlin Meng
Renjie Liao
Stefano Ermon
17
28
0
10 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
68
427
0
26 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
40
65
0
15 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
Automated Dependence Plots
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
36
0
0
04 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
21
6
0
02 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
  Flows
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
29
2
0
30 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to
  Constrain Distance Estimates
Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to Constrain Distance Estimates
M. Cranmer
Richard Galvez
L. Anderson
D. Spergel
S. Ho
18
7
0
21 Aug 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
34
146
0
14 Aug 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Black-Box Inference for Non-Linear Latent Force Models
Black-Box Inference for Non-Linear Latent Force Models
W. Ward
Tom Ryder
D. Prangle
Mauricio A. Alvarez
DRL
31
14
0
21 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
748
0
10 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
Fast Flow Reconstruction via Robust Invertible nxn Convolution
Fast Flow Reconstruction via Robust Invertible nxn Convolution
Thanh-Dat Truong
Khoa Luu
C. Duong
Ngan Le
M. Tran
24
7
0
24 May 2019
Deep Unsupervised Cardinality Estimation
Deep Unsupervised Cardinality Estimation
Zongheng Yang
Eric Liang
Amog Kamsetty
Chenggang Wu
Yan Duan
Peter Chen
Pieter Abbeel
J. M. Hellerstein
S. Krishnan
Ion Stoica
27
203
0
10 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
22
142
0
07 May 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
26
27
0
17 Apr 2019
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic
  Grasping
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic Grasping
Mengyuan Yan
A. Li
Mrinal Kalakrishnan
P. Pastor
15
18
0
15 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
24
17
0
15 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
35
69
0
30 Mar 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
37
269
0
29 Mar 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
Emerging Convolutions for Generative Normalizing Flows
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
24
98
0
30 Jan 2019
Latent Normalizing Flows for Discrete Sequences
Latent Normalizing Flows for Discrete Sequences
Zachary M. Ziegler
Alexander M. Rush
BDL
DRL
27
123
0
29 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational
  AutoEncoders
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
28
39
0
06 Jan 2019
Sequential Neural Methods for Likelihood-free Inference
Sequential Neural Methods for Likelihood-free Inference
Conor Durkan
George Papamakarios
Iain Murray
BDL
36
24
0
21 Nov 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
37
618
0
02 Nov 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
17
851
0
02 Oct 2018
Previous
1234
Next