ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03509
  4. Cited By
MADE: Masked Autoencoder for Distribution Estimation

MADE: Masked Autoencoder for Distribution Estimation

12 February 2015
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
    OOD
    SyDa
    UQCV
ArXivPDFHTML

Papers citing "MADE: Masked Autoencoder for Distribution Estimation"

50 / 185 papers shown
Title
Learning Conditional Variational Autoencoders with Missing Covariates
Learning Conditional Variational Autoencoders with Missing Covariates
S. Ramchandran
Gleb Tikhonov
Otto Lönnroth
Pekka Tiikkainen
Harri Lähdesmäki
CML
27
14
0
02 Mar 2022
Supported Policy Optimization for Offline Reinforcement Learning
Supported Policy Optimization for Offline Reinforcement Learning
Jialong Wu
Haixu Wu
Zihan Qiu
Jianmin Wang
Mingsheng Long
OffRL
37
65
0
13 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
102
0
07 Feb 2022
Robust Audio Anomaly Detection
Robust Audio Anomaly Detection
Wo Jae Lee
Karim Helwani
A. Krishnaswamy
S. Tenneti
OOD
AI4TS
30
2
0
03 Feb 2022
Generative Flow Networks for Discrete Probabilistic Modeling
Generative Flow Networks for Discrete Probabilistic Modeling
Dinghuai Zhang
Nikolay Malkin
Ziqiang Liu
Alexandra Volokhova
Aaron Courville
Yoshua Bengio
27
103
0
03 Feb 2022
Gradient estimators for normalising flows
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
27
3
0
02 Feb 2022
ShapeFormer: Transformer-based Shape Completion via Sparse
  Representation
ShapeFormer: Transformer-based Shape Completion via Sparse Representation
Xingguang Yan
Liqiang Lin
Niloy J. Mitra
Dani Lischinski
Daniel Cohen-Or
Hui Huang
ViT
76
114
0
25 Jan 2022
Keeping Deep Lithography Simulators Updated: Global-Local Shape-Based
  Novelty Detection and Active Learning
Keeping Deep Lithography Simulators Updated: Global-Local Shape-Based Novelty Detection and Active Learning
Hao-Chiang Shao
Hsing-Lei Ping
Kuo-shiuan Chen
Weng-Tai Su
Chia-Wen Lin
Shao-Yun Fang
Pin-Yian Tsai
Yan-Hsiu Liu
30
7
0
24 Jan 2022
Disentangling Style and Speaker Attributes for TTS Style Transfer
Disentangling Style and Speaker Attributes for TTS Style Transfer
Xiaochun An
Frank Soong
Lei Xie
72
18
0
24 Jan 2022
$m^\ast$ of two-dimensional electron gas: a neural canonical
  transformation study
m∗m^\astm∗ of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
36
8
0
10 Jan 2022
Triangular Flows for Generative Modeling: Statistical Consistency,
  Smoothness Classes, and Fast Rates
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
33
18
0
31 Dec 2021
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
49
72
0
06 Dec 2021
MCCE: Monte Carlo sampling of realistic counterfactual explanations
MCCE: Monte Carlo sampling of realistic counterfactual explanations
Annabelle Redelmeier
Martin Jullum
K. Aas
Anders Løland
BDL
37
11
0
18 Nov 2021
A Bayesian generative neural network framework for epidemic inference
  problems
A Bayesian generative neural network framework for epidemic inference problems
I. Biazzo
Alfredo Braunstein
Luca DallÁsta
Fabio Mazza
24
16
0
05 Nov 2021
Probabilistic Autoencoder using Fisher Information
Probabilistic Autoencoder using Fisher Information
J. Zacherl
Philipp Frank
T. Ensslin
EgoV
AI4CE
33
2
0
28 Oct 2021
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter
  Showers with Normalizing Flows
CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
45
64
0
21 Oct 2021
Diffusion Normalizing Flow
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
35
87
0
14 Oct 2021
Exchangeability-Aware Sum-Product Networks
Exchangeability-Aware Sum-Product Networks
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
TPM
11
2
0
11 Oct 2021
Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
Marco Rudolph
Tom Wehrbein
Bodo Rosenhahn
Bastian Wandt
UQCV
81
208
0
06 Oct 2021
SpliceOut: A Simple and Efficient Audio Augmentation Method
SpliceOut: A Simple and Efficient Audio Augmentation Method
Arjit Jain
Pranay Reddy Samala
Deepak Mittal
Preethi Jyothi
M. Singh
32
10
0
30 Sep 2021
Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation
Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation
Yuxing Han
Ziniu Wu
Peizhi Wu
Rong Zhu
Jingyi Yang
...
A. Pfadler
Zhengping Qian
Jingren Zhou
Jiangneng Li
Bin Cui
32
102
0
13 Sep 2021
ImageBART: Bidirectional Context with Multinomial Diffusion for
  Autoregressive Image Synthesis
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Patrick Esser
Robin Rombach
A. Blattmann
Bjorn Ommer
DiffM
38
158
0
19 Aug 2021
Cross-Camera Feature Prediction for Intra-Camera Supervised Person
  Re-identification across Distant Scenes
Cross-Camera Feature Prediction for Intra-Camera Supervised Person Re-identification across Distant Scenes
Wenhang Ge
Chunyan Pan
Ancong Wu
Hongwei Zheng
Weishi Zheng
27
26
0
29 Jul 2021
Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows
Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows
Tom Wehrbein
Marco Rudolph
Bodo Rosenhahn
Bastian Wandt
3DH
28
118
0
29 Jul 2021
A Unified Deep Model of Learning from both Data and Queries for
  Cardinality Estimation
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation
Peizhi Wu
Gao Cong
OOD
24
64
0
26 Jul 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Tensor networks for unsupervised machine learning
Tensor networks for unsupervised machine learning
Jing Liu
Sujie Li
Jiang Zhang
Pan Zhang
SSL
25
25
0
24 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Low-rank Characteristic Tensor Density Estimation Part II: Compression
  and Latent Density Estimation
Low-rank Characteristic Tensor Density Estimation Part II: Compression and Latent Density Estimation
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
21
10
0
20 Jun 2021
Fair Normalizing Flows
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
22
36
0
10 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
36
81
0
09 Jun 2021
A Unified Transferable Model for ML-Enhanced DBMS
A Unified Transferable Model for ML-Enhanced DBMS
Ziniu Wu
Pei Yu
Peilun Yang
Rong Zhu
Yuxing Han
Yaliang Li
Defu Lian
K. Zeng
Jingren Zhou
42
31
0
06 May 2021
Learning to design drug-like molecules in three-dimensional space using
  deep generative models
Learning to design drug-like molecules in three-dimensional space using deep generative models
Yibo Li
Jianfeng Pei
L. Lai
DiffM
37
111
0
17 Apr 2021
Differentially Private Normalizing Flows for Privacy-Preserving Density
  Estimation
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
19
15
0
25 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
43
297
0
03 Mar 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
45
70
0
15 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
GAN Inversion: A Survey
GAN Inversion: A Survey
Weihao Xia
Yulun Zhang
Yujiu Yang
Jing-Hao Xue
Bolei Zhou
Ming-Hsuan Yang
DiffM
70
507
0
14 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
243
0
09 Jan 2021
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation
Ziniu Wu
Amir Shaikhha
Rong Zhu
Kai Zeng
Yuxing Han
Jingren Zhou
BDL
17
23
0
29 Dec 2020
Are We Ready For Learned Cardinality Estimation?
Are We Ready For Learned Cardinality Estimation?
Xiaoying Wang
Changbo Qu
Weiyuan Wu
Jiannan Wang
Qingqing Zhou
39
113
0
12 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
Discriminative, Generative and Self-Supervised Approaches for
  Target-Agnostic Learning
Discriminative, Generative and Self-Supervised Approaches for Target-Agnostic Learning
Yuan Jin
Wray Buntine
F. Petitjean
Geoffrey I. Webb
SSL
25
1
0
12 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Dataset Dynamics via Gradient Flows in Probability Space
Dataset Dynamics via Gradient Flows in Probability Space
David Alvarez-Melis
Nicolò Fusi
29
18
0
24 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
21
7
0
20 Oct 2020
Imitation with Neural Density Models
Imitation with Neural Density Models
Kuno Kim
Akshat Jindal
Yang Song
Jiaming Song
Yanan Sui
Stefano Ermon
41
12
0
19 Oct 2020
Automating Inference of Binary Microlensing Events with Neural Density
  Estimation
Automating Inference of Binary Microlensing Events with Neural Density Estimation
Keming 名 Zhang 张 可
J. Bloom
B. Gaudi
F. Lanusse
C. Lam
Jessica R. Lu
9
1
0
08 Oct 2020
Previous
1234
Next