ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.02761
  4. Cited By
Generative Moment Matching Networks

Generative Moment Matching Networks

10 February 2015
Yujia Li
Kevin Swersky
R. Zemel
    OOD
    GAN
ArXivPDFHTML

Papers citing "Generative Moment Matching Networks"

41 / 191 papers shown
Title
PassGAN: A Deep Learning Approach for Password Guessing
PassGAN: A Deep Learning Approach for Password Guessing
Briland Hitaj
Paolo Gasti
G. Ateniese
Fernando Perez-Cruz
GAN
30
246
0
01 Sep 2017
Submodular Mini-Batch Training in Generative Moment Matching Networks
Jun Qi
11
0
0
18 Jul 2017
MoCoGAN: Decomposing Motion and Content for Video Generation
MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov
Ming Liu
Xiaodong Yang
Jan Kautz
GAN
93
1,131
0
17 Jul 2017
Learning Representations and Generative Models for 3D Point Clouds
Learning Representations and Generative Models for 3D Point Clouds
Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas J. Guibas
3DV
3DPC
36
88
0
08 Jul 2017
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
29
109
0
23 Jun 2017
Real-valued (Medical) Time Series Generation with Recurrent Conditional
  GANs
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
Cristóbal Esteban
Stephanie L. Hyland
Gunnar Rätsch
GAN
SyDa
MedIm
48
769
0
08 Jun 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRL
GAN
41
127
0
02 Jun 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
61
619
0
01 Jun 2017
Geometric GAN
Geometric GAN
Jae Hyun Lim
J. C. Ye
GAN
26
516
0
08 May 2017
The Pose Knows: Video Forecasting by Generating Pose Futures
The Pose Knows: Video Forecasting by Generating Pose Futures
Jacob Walker
Kenneth Marino
Abhinav Gupta
M. Hebert
35
349
0
28 Apr 2017
Triple Generative Adversarial Nets
Triple Generative Adversarial Nets
Chongxuan Li
T. Xu
Jun Zhu
Bo Zhang
GAN
42
449
0
07 Mar 2017
Central Moment Discrepancy (CMD) for Domain-Invariant Representation
  Learning
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
Werner Zellinger
Thomas Grubinger
E. Lughofer
T. Natschläger
Susanne Saminger-Platz
OOD
14
563
0
28 Feb 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
72
4,809
0
26 Jan 2017
Online Structure Learning for Sum-Product Networks with Gaussian Leaves
Online Structure Learning for Sum-Product Networks with Gaussian Leaves
W. Hsu
Agastya Kalra
Pascal Poupart
TPM
6
28
0
19 Jan 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
Stacked Generative Adversarial Networks
Stacked Generative Adversarial Networks
Xun Huang
Yixuan Li
Omid Poursaeed
J. Hopcroft
Serge J. Belongie
GAN
22
458
0
13 Dec 2016
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Semi-Supervised Learning with Context-Conditional Generative Adversarial
  Networks
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Emily L. Denton
Sam Gross
Rob Fergus
GAN
27
150
0
19 Nov 2016
Associative Adversarial Networks
Associative Adversarial Networks
Tarik Arici
Asli Celikyilmaz
GAN
34
17
0
18 Nov 2016
Fast Non-Parametric Tests of Relative Dependency and Similarity
Fast Non-Parametric Tests of Relative Dependency and Similarity
Wacha Bounliphone
Eugene Belilovsky
A. Tenenhaus
Ioannis Antonoglou
Arthur Gretton
Matthew B. Blashcko
31
1
0
17 Nov 2016
Generative Models and Model Criticism via Optimized Maximum Mean
  Discrepancy
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
Danica J. Sutherland
H. Tung
Heiko Strathmann
Soumyajit De
Aaditya Ramdas
Alex Smola
Arthur Gretton
32
253
0
14 Nov 2016
On the Quantitative Analysis of Decoder-Based Generative Models
On the Quantitative Analysis of Decoder-Based Generative Models
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
GAN
22
223
0
14 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
Removal of Batch Effects using Distribution-Matching Residual Networks
Removal of Batch Effects using Distribution-Matching Residual Networks
Uri Shaham
Kelly P. Stanton
Jun Zhao
Huamin Li
K. Raddassi
Ruth R. Montgomery
Y. Kluger
24
160
0
13 Oct 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
25
412
0
11 Oct 2016
Towards cross-lingual distributed representations without parallel text
  trained with adversarial autoencoders
Towards cross-lingual distributed representations without parallel text trained with adversarial autoencoders
Antonio Valerio Miceli Barone
16
120
0
09 Aug 2016
Coupled Generative Adversarial Networks
Coupled Generative Adversarial Networks
Ming Liu
Oncel Tuzel
OOD
GAN
22
1,622
0
24 Jun 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
146
8,932
0
10 Jun 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
42
313
0
07 May 2016
Gaussian Copula Variational Autoencoders for Mixed Data
Gaussian Copula Variational Autoencoders for Mixed Data
Suwon Suh
Seungjin Choi
DRL
15
14
0
18 Apr 2016
Generative Image Modeling using Style and Structure Adversarial Networks
Generative Image Modeling using Style and Structure Adversarial Networks
Xueliang Wang
Abhinav Gupta
GAN
31
617
0
17 Mar 2016
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Dmitry Ulyanov
V. Lebedev
Andrea Vedaldi
Victor Lempitsky
3DH
14
942
0
10 Mar 2016
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Deep Manifold Traversal: Changing Labels with Convolutional Features
Deep Manifold Traversal: Changing Labels with Convolutional Features
Jacob R. Gardner
P. Upchurch
Matt J. Kusner
Yixuan Li
Kilian Q. Weinberger
Kavita Bala
J. Hopcroft
34
65
0
19 Nov 2015
Learning to Generate Images with Perceptual Similarity Metrics
Learning to Generate Images with Perceptual Similarity Metrics
Jake C. Snell
Karl Ridgeway
Renjie Liao
Brett D. Roads
Michael C. Mozer
R. Zemel
EGVM
24
176
0
19 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
34
2,343
0
19 Nov 2015
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
28
296
0
16 Nov 2015
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
24
1,132
0
05 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
15
1,236
0
01 Sep 2015
Training generative neural networks via Maximum Mean Discrepancy
  optimization
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
19
524
0
14 May 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,639
0
03 Jul 2012
Previous
1234