Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 206 papers shown
Title
Audio scene monitoring using redundant ad-hoc microphone array networks
Peter Gerstoft
Yihan Hu
Michael J. Bianco
Chaitanya Patil
Ardel Alegre
Y. Freund
François Grondin
39
11
0
02 Mar 2021
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
34
34
0
25 Feb 2021
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
30
153
0
20 Feb 2021
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
Manan Tomar
Amy Zhang
Roberto Calandra
Matthew E. Taylor
Joelle Pineau
27
24
0
19 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
215
126
0
04 Jan 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
108
1,386
0
14 Dec 2020
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
233
255
0
09 Dec 2020
Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies
Zijian Guo
30
17
0
15 Nov 2020
Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners
E. C. Neto
OOD
CML
32
6
0
09 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
77
671
0
06 Nov 2020
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
31
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
39
39
0
29 Oct 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
32
306
0
24 Sep 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
29
179
0
01 Sep 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
38
65
0
04 Aug 2020
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
18
79
0
28 Jul 2020
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
19
29
0
20 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
29
85
0
17 Jun 2020
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
61
33
0
13 Jun 2020
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
38
326
0
12 Jun 2020
Conformal Inference of Counterfactuals and Individual Treatment Effects
Lihua Lei
Emmanuel J. Candès
CML
23
190
0
11 Jun 2020
Active Invariant Causal Prediction: Experiment Selection through Stability
Juan L. Gamella
C. Heinze-Deml
OOD
21
45
0
10 Jun 2020
Balance-Subsampled Stable Prediction
Kun Kuang
Hengtao Zhang
Fei Wu
Yueting Zhuang
Aijun Zhang
OOD
16
3
0
08 Jun 2020
Distributional robustness of K-class estimators and the PULSE
M. E. Jakobsen
J. Peters
OOD
11
29
0
07 May 2020
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
SSL
CML
42
118
0
20 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
908
0
02 Mar 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
33
244
0
11 Feb 2020
Stable Prediction with Model Misspecification and Agnostic Distribution Shift
Kun Kuang
Ruoxuan Xiong
Peng Cui
Susan Athey
Yue Liu
OOD
30
128
0
31 Jan 2020
Improving Model Robustness Using Causal Knowledge
T. Kyono
M. Schaar
OOD
30
12
0
27 Nov 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
16
1,202
0
20 Nov 2019
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
29
92
0
17 Nov 2019
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CML
OOD
44
168
0
02 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
33
32
0
27 Sep 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
101
2,165
0
05 Jul 2019
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Erdun Gao
Kun Zhang
Biwei Huang
Clark Glymour
CML
AI4TS
29
63
0
26 May 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
51
332
0
30 Jan 2019
Veridical Data Science
Bin Yu
Karl Kumbier
23
162
0
23 Jan 2019
Learning stable and predictive structures in kinetic systems: Benefits of a causal approach
Niklas Pfister
Stefan Bauer
J. Peters
CML
22
41
0
28 Oct 2018
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
39
168
0
25 Sep 2018
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models
Alexander Neitz
Giambattista Parascandolo
Stefan Bauer
Bernhard Schölkopf
31
38
0
14 Aug 2018
Stable Prediction across Unknown Environments
Kun Kuang
Ruoxuan Xiong
Peng Cui
Susan Athey
Bo Li
OOD
18
166
0
16 Jun 2018
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
Niklas Pfister
S. Weichwald
Peter Buhlmann
Bernhard Schölkopf
OOD
CML
18
16
0
04 Jun 2018
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
Two-sample instrumental variable analyses using heterogeneous samples
Qingyuan Zhao
Jingshu Wang
J. Bowden
Dylan S. Small
16
46
0
31 Aug 2017
Learning Causal Structures Using Regression Invariance
AmirEmad Ghassami
Saber Salehkaleybar
Negar Kiyavash
Kun Zhang
OOD
CML
27
60
0
26 May 2017
Group invariance principles for causal generative models
M. Besserve
Naji Shajarisales
Bernhard Schölkopf
Dominik Janzing
16
48
0
05 May 2017
Cost-Optimal Learning of Causal Graphs
Murat Kocaoglu
A. Dimakis
S. Vishwanath
CML
18
67
0
08 Mar 2017
Previous
1
2
3
4
5
Next