47
2

Causally Inspired Regularization Enables Domain General Representations

Abstract

Given a causal graph representing the data-generating process shared across different domains/distributions, enforcing sufficient graph-implied conditional independencies can identify domain-general (non-spurious) feature representations. For the standard input-output predictive setting, we categorize the set of graphs considered in the literature into two distinct groups: (i) those in which the empirical risk minimizer across training domains gives domain-general representations and (ii) those where it does not. For the latter case (ii), we propose a novel framework with regularizations, which we demonstrate are sufficient for identifying domain-general feature representations without a priori knowledge (or proxies) of the spurious features. Empirically, our proposed method is effective for both (semi) synthetic and real-world data, outperforming other state-of-the-art methods in average and worst-domain transfer accuracy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.