ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6980
  4. Cited By
Adam: A Method for Stochastic Optimization
v1v2v3v4v5v6v7v8v9 (latest)

Adam: A Method for Stochastic Optimization

22 December 2014
Diederik P. Kingma
Jimmy Ba
    ODL
ArXiv (abs)PDFHTML

Papers citing "Adam: A Method for Stochastic Optimization"

36 / 37,032 papers shown
Title
Aligning Books and Movies: Towards Story-like Visual Explanations by
  Watching Movies and Reading Books
Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
Yukun Zhu
Ryan Kiros
R. Zemel
Ruslan Salakhutdinov
R. Urtasun
Antonio Torralba
Sanja Fidler
178
2,558
0
22 Jun 2015
Aligning where to see and what to tell: image caption with region-based
  attention and scene factorization
Aligning where to see and what to tell: image caption with region-based attention and scene factorization
Junqi Jin
Kun Fu
Runpeng Cui
Fei Sha
Changshui Zhang
93
117
0
20 Jun 2015
Bayesian representation learning with oracle constraints
Bayesian representation learning with oracle constraints
Theofanis Karaletsos
Serge J. Belongie
Gunnar Rätsch
BDL
90
92
0
16 Jun 2015
Learning Deep Generative Models with Doubly Stochastic MCMC
Learning Deep Generative Models with Doubly Stochastic MCMC
Chao Du
Jun Zhu
Bo Zhang
BDLSyDa
71
9
0
15 Jun 2015
Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to
  Action Sequences
Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences
Hongyuan Mei
Joey Tianyi Zhou
Matthew R. Walter
LM&Ro
114
244
0
12 Jun 2015
Spectral Representations for Convolutional Neural Networks
Spectral Representations for Convolutional Neural Networks
Oren Rippel
Jasper Snoek
Ryan P. Adams
72
329
0
11 Jun 2015
Learning language through pictures
Learning language through pictures
Grzegorz Chrupała
Ákos Kádár
Afra Alishahi
VLMSSL
106
65
0
11 Jun 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
106
58
0
10 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
99
233
0
10 Jun 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
95
147
0
10 Jun 2015
Inverting Visual Representations with Convolutional Networks
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSLFAtt
114
668
0
09 Jun 2015
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Path-SGD: Path-Normalized Optimization in Deep Neural Networks
Behnam Neyshabur
Ruslan Salakhutdinov
Nathan Srebro
ODL
105
310
0
08 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
242
1,518
0
08 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
142
1,263
0
07 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
961
9,386
0
06 Jun 2015
Beyond Temporal Pooling: Recurrence and Temporal Convolutions for
  Gesture Recognition in Video
Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video
Lionel Pigou
Aaron van den Oord
Sander Dieleman
Mieke Van Herreweghe
J. Dambre
79
256
0
05 Jun 2015
Cyclical Learning Rates for Training Neural Networks
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
242
2,543
0
03 Jun 2015
Predicting Deep Zero-Shot Convolutional Neural Networks using Textual
  Descriptions
Predicting Deep Zero-Shot Convolutional Neural Networks using Textual Descriptions
Jimmy Ba
Kevin Swersky
Sanja Fidler
Ruslan Salakhutdinov
VLM
115
440
0
01 Jun 2015
Towards stability and optimality in stochastic gradient descent
Towards stability and optimality in stochastic gradient descent
Panos Toulis
Dustin Tran
E. Airoldi
102
56
0
10 May 2015
Sequence to Sequence -- Video to Text
Sequence to Sequence -- Video to Text
Subhashini Venugopalan
Marcus Rohrbach
Jeff Donahue
Raymond J. Mooney
Trevor Darrell
Kate Saenko
150
1,421
0
03 May 2015
ReNet: A Recurrent Neural Network Based Alternative to Convolutional
  Networks
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
Francesco Visin
Kyle Kastner
Kyunghyun Cho
Matteo Matteucci
Aaron Courville
Yoshua Bengio
SSeg
81
271
0
03 May 2015
Lateral Connections in Denoising Autoencoders Support Supervised
  Learning
Lateral Connections in Denoising Autoencoders Support Supervised Learning
Antti Rasmus
Harri Valpola
T. Raiko
84
22
0
30 Apr 2015
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
359
4,183
0
26 Apr 2015
Max-margin Deep Generative Models
Max-margin Deep Generative Models
Chongxuan Li
Jun Zhu
Tianlin Shi
Bo Zhang
AI4CE
95
33
0
26 Apr 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
95
95
0
06 Apr 2015
On Using Monolingual Corpora in Neural Machine Translation
On Using Monolingual Corpora in Neural Machine Translation
Çağlar Gülçehre
Orhan Firat
Kelvin Xu
Kyunghyun Cho
Loïc Barrault
Huei-Chi Lin
Fethi Bougares
Holger Schwenk
Yoshua Bengio
163
564
0
11 Mar 2015
Convolutional LSTM Networks for Subcellular Localization of Proteins
Convolutional LSTM Networks for Subcellular Localization of Proteins
Søren Kaae Sønderby
C. Sønderby
H. Nielsen
Ole Winther
102
147
0
06 Mar 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
192
2,832
0
20 Feb 2015
DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GANDRL
193
1,963
0
16 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
245
946
0
11 Feb 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
352
10,102
0
10 Feb 2015
Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
101
126
0
10 Feb 2015
Gated Feedback Recurrent Neural Networks
Gated Feedback Recurrent Neural Networks
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
86
831
0
09 Feb 2015
Variational Recurrent Auto-Encoders
Variational Recurrent Auto-Encoders
Otto Fabius
Joost R. van Amersfoort
GANBDLDRL
119
247
0
20 Dec 2014
New insights and perspectives on the natural gradient method
New insights and perspectives on the natural gradient method
James Martens
ODL
204
631
0
03 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
158
2,271
0
30 Oct 2014
Previous
123...739740741