ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6980
  4. Cited By
Adam: A Method for Stochastic Optimization
v1v2v3v4v5v6v7v8v9 (latest)

Adam: A Method for Stochastic Optimization

22 December 2014
Diederik P. Kingma
Jimmy Ba
    ODL
ArXiv (abs)PDFHTML

Papers citing "Adam: A Method for Stochastic Optimization"

50 / 37,040 papers shown
Title
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
Xuezhe Ma
Eduard H. Hovy
128
2,660
0
04 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
719
0
02 Mar 2016
Continuous Deep Q-Learning with Model-based Acceleration
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
99
1,013
0
02 Mar 2016
PLATO: Policy Learning using Adaptive Trajectory Optimization
PLATO: Policy Learning using Adaptive Trajectory Optimization
G. Kahn
Tianhao Zhang
Sergey Levine
Pieter Abbeel
118
137
0
02 Mar 2016
Easy-First Dependency Parsing with Hierarchical Tree LSTMs
Easy-First Dependency Parsing with Hierarchical Tree LSTMs
E. Kiperwasser
Yoav Goldberg
79
65
0
01 Mar 2016
Scalable Metric Learning via Weighted Approximate Rank Component
  Analysis
Scalable Metric Learning via Weighted Approximate Rank Component Analysis
C. Jose
François Fleuret
107
141
0
01 Mar 2016
Architectural Complexity Measures of Recurrent Neural Networks
Architectural Complexity Measures of Recurrent Neural Networks
Saizheng Zhang
Yuhuai Wu
Tong Che
Zhouhan Lin
Roland Memisevic
Ruslan Salakhutdinov
Yoshua Bengio
GNN
111
155
0
26 Feb 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
215
1,947
0
25 Feb 2016
Learning values across many orders of magnitude
Learning values across many orders of magnitude
H. V. Hasselt
A. Guez
Matteo Hessel
Volodymyr Mnih
David Silver
88
170
0
24 Feb 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
215
1,949
0
24 Feb 2016
Learning to Generate with Memory
Learning to Generate with Memory
Chongxuan Li
Jun Zhu
Bo Zhang
BDL
123
42
0
24 Feb 2016
Sentence Similarity Learning by Lexical Decomposition and Composition
Sentence Similarity Learning by Lexical Decomposition and Composition
Zhiguo Wang
Haitao Mi
Abraham Ittycheriah
106
198
0
23 Feb 2016
Semi-supervised Clustering for Short Text via Deep Representation
  Learning
Semi-supervised Clustering for Short Text via Deep Representation Learning
Zhiguo Wang
Haitao Mi
Abraham Ittycheriah
SSLGNN
87
56
0
22 Feb 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRLBDL
173
291
0
22 Feb 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
175
110
0
22 Feb 2016
Convolutional RNN: an Enhanced Model for Extracting Features from
  Sequential Data
Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data
Gil Keren
Björn Schuller
70
140
0
18 Feb 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
477
17,738
0
17 Feb 2016
Auxiliary Deep Generative Models
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRLGAN
110
451
0
17 Feb 2016
Generating images with recurrent adversarial networks
Generating images with recurrent adversarial networks
Daniel Jiwoong Im
C. Kim
Hui Jiang
Roland Memisevic
GAN
116
223
0
16 Feb 2016
Unsupervised Domain Adaptation Using Approximate Label Matching
Unsupervised Domain Adaptation Using Approximate Label Matching
Jordan T. Ash
Robert Schapire
Barbara E. Engelhardt
OOD
67
7
0
16 Feb 2016
Deep Gaussian Processes for Regression using Approximate Expectation
  Propagation
Deep Gaussian Processes for Regression using Approximate Expectation Propagation
T. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
153
237
0
12 Feb 2016
Convolutional Radio Modulation Recognition Networks
Convolutional Radio Modulation Recognition Networks
Tim O'Shea
Johnathan Corgan
T. Clancy
77
1,096
0
12 Feb 2016
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
118
8
0
11 Feb 2016
Learning Efficient Algorithms with Hierarchical Attentive Memory
Learning Efficient Algorithms with Hierarchical Attentive Memory
Marcin Andrychowicz
Karol Kurach
88
51
0
09 Feb 2016
Associative Long Short-Term Memory
Associative Long Short-Term Memory
Ivo Danihelka
Greg Wayne
Benigno Uria
Nal Kalchbrenner
Alex Graves
92
180
0
09 Feb 2016
Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation
Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation
Colin S. Lea
A. Reiter
René Vidal
Gregory Hager
171
272
0
09 Feb 2016
Learning to Communicate to Solve Riddles with Deep Distributed Recurrent
  Q-Networks
Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks
Jakob N. Foerster
Yannis Assael
Nando de Freitas
Shimon Whiteson
85
147
0
08 Feb 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
130
364
0
08 Feb 2016
Generating Images with Perceptual Similarity Metrics based on Deep
  Networks
Generating Images with Perceptual Similarity Metrics based on Deep Networks
Alexey Dosovitskiy
Thomas Brox
DRLGAN
156
1,144
0
08 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
269
1,348
0
08 Feb 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
148
263
0
06 Feb 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDLDRL
110
916
0
06 Feb 2016
Improved Dropout for Shallow and Deep Learning
Improved Dropout for Shallow and Deep Learning
Zhe Li
Boqing Gong
Tianbao Yang
BDLSyDa
101
78
0
06 Feb 2016
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label
  Classification
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
André F. T. Martins
Ramón Fernández Astudillo
231
726
0
05 Feb 2016
Recognition of Visually Perceived Compositional Human Actions by
  Multiple Spatio-Temporal Scales Recurrent Neural Networks
Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks
Haanvid Lee
Minju Jung
Jun Tani
67
20
0
05 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
223
8,893
0
04 Feb 2016
Many Languages, One Parser
Many Languages, One Parser
Bridger Waleed Ammar
George Mulcaire
Miguel Ballesteros
Chris Dyer
Noah A. Smith
100
227
0
04 Feb 2016
A Kronecker-factored approximate Fisher matrix for convolution layers
A Kronecker-factored approximate Fisher matrix for convolution layers
Roger C. Grosse
James Martens
ODL
112
265
0
03 Feb 2016
Long Short-Term Memory-Networks for Machine Reading
Long Short-Term Memory-Networks for Machine Reading
Jianpeng Cheng
Li Dong
Mirella Lapata
AIMatRALM
127
1,123
0
25 Jan 2016
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Suraj Srinivas
Ravi Kiran Sarvadevabhatla
Konda Reddy Mopuri
N. Prabhu
S. Kruthiventi
R. Venkatesh Babu
OOD
69
216
0
25 Jan 2016
Unsupervised convolutional neural networks for motion estimation
Unsupervised convolutional neural networks for motion estimation
A. Ahmadi
Ioannis Patras
69
102
0
22 Jan 2016
Leveraging Sentence-level Information with Encoder LSTM for Semantic
  Slot Filling
Leveraging Sentence-level Information with Encoder LSTM for Semantic Slot Filling
Gakuto Kurata
Bing Xiang
Bowen Zhou
Mo Yu
115
125
0
07 Jan 2016
Multi-Way, Multilingual Neural Machine Translation with a Shared
  Attention Mechanism
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
Orhan Firat
Kyunghyun Cho
Yoshua Bengio
LRMAIMat
280
627
0
06 Jan 2016
End-to-End Relation Extraction using LSTMs on Sequences and Tree
  Structures
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures
Makoto Miwa
Joey Tianyi Zhou
162
1,191
0
05 Jan 2016
Weakly-supervised Disentangling with Recurrent Transformations for 3D
  View Synthesis
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis
Jimei Yang
Scott E. Reed
Ming-Hsuan Yang
Honglak Lee
VOT
80
315
0
05 Jan 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
183
70
0
31 Dec 2015
Learning Natural Language Inference with LSTM
Learning Natural Language Inference with LSTM
Shuohang Wang
Jing Jiang
114
446
0
30 Dec 2015
Feed-Forward Networks with Attention Can Solve Some Long-Term Memory
  Problems
Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems
Colin Raffel
D. Ellis
CLL
99
305
0
29 Dec 2015
Bridging the Gap between Stochastic Gradient MCMC and Stochastic
  Optimization
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
Changyou Chen
David Carlson
Zhe Gan
Chunyuan Li
Lawrence Carin
90
90
0
25 Dec 2015
Learning Transferrable Knowledge for Semantic Segmentation with Deep
  Convolutional Neural Network
Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network
Seunghoon Hong
Junhyuk Oh
Bohyung Han
Honglak Lee
SSeg
102
174
0
24 Dec 2015
Previous
123...737738739740741
Next