ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.0342
  4. Cited By
Generalized Low Rank Models

Generalized Low Rank Models

1 October 2014
Madeleine Udell
Corinne Horn
R. Zadeh
Stephen P. Boyd
ArXivPDFHTML

Papers citing "Generalized Low Rank Models"

37 / 37 papers shown
Title
Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning
Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning
Hanwen Zhong
Jiaxin Chen
Yutong Zhang
Di Huang
Yunhong Wang
MoE
44
0
0
12 Jan 2025
Matrix Low-Rank Trust Region Policy Optimization
Matrix Low-Rank Trust Region Policy Optimization
Sergio Rozada
Antonio G. Marques
43
0
0
27 May 2024
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile
Jérémie Bigot
Issa-Mbenard Dabo
Camille Male
31
4
0
29 Mar 2024
Algorithms for Boolean Matrix Factorization using Integer Programming
Algorithms for Boolean Matrix Factorization using Integer Programming
Christos Kolomvakis
A. Vandaele
Nicolas Gillis
16
1
0
17 May 2023
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for
  Dynamic Imaging
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
Berk Iskender
M. Klasky
Y. Bresler
33
3
0
07 Apr 2023
Archetypal Analysis++: Rethinking the Initialization Strategy
Archetypal Analysis++: Rethinking the Initialization Strategy
Sebastian Mair
Jens Sjölund
18
1
0
31 Jan 2023
Sparse PCA With Multiple Components
Sparse PCA With Multiple Components
Ryan Cory-Wright
J. Pauphilet
37
2
0
29 Sep 2022
Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement
  Learning
Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning
Sergio Rozada
Santiago Paternain
A. Marques
58
13
0
21 Jan 2022
Fair and efficient contribution valuation for vertical federated
  learning
Fair and efficient contribution valuation for vertical federated learning
Zhenan Fan
Huang Fang
Zirui Zhou
Jian Pei
M. Friedlander
Yong Zhang
TDI
FedML
21
25
0
07 Jan 2022
Asymptotics of $\ell_2$ Regularized Network Embeddings
Asymptotics of ℓ2\ell_2ℓ2​ Regularized Network Embeddings
A. Davison
25
0
0
05 Jan 2022
Is Attention Better Than Matrix Decomposition?
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
62
137
0
09 Sep 2021
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
Deep matrix factorizations
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
28
40
0
01 Oct 2020
An Information-Theoretic Approach to Persistent Environment Monitoring
  Through Low Rank Model Based Planning and Prediction
An Information-Theoretic Approach to Persistent Environment Monitoring Through Low Rank Model Based Planning and Prediction
Elizabeth A. Ricci
Madeleine Udell
Ross A. Knepper
4
0
0
02 Sep 2020
Deconstructing and reconstructing word embedding algorithms
Deconstructing and reconstructing word embedding algorithms
Edward Newell
Kian Kenyon-Dean
Jackie C.K. Cheung
39
4
0
29 Nov 2019
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix
  Recovery
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery
Jicong Fan
Lijun Ding
Yudong Chen
Madeleine Udell
14
69
0
13 Nov 2019
Implicit Deep Learning
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Neuroscience-inspired online unsupervised learning algorithms
Neuroscience-inspired online unsupervised learning algorithms
Cengiz Pehlevan
D. Chklovskii
22
54
0
05 Aug 2019
Robust Variational Autoencoders for Outlier Detection and Repair of
  Mixed-Type Data
Robust Variational Autoencoders for Outlier Detection and Repair of Mixed-Type Data
Simao Eduardo
A. Nazábal
Christopher K. I. Williams
Charles Sutton
DRL
16
32
0
15 Jul 2019
Stochastic Gradients for Large-Scale Tensor Decomposition
Stochastic Gradients for Large-Scale Tensor Decomposition
T. Kolda
David Hong
28
56
0
04 Jun 2019
Determining Principal Component Cardinality through the Principle of
  Minimum Description Length
Determining Principal Component Cardinality through the Principle of Minimum Description Length
A. Tavory
12
0
0
31 Dec 2018
Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization
Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization
Alberto Lumbreras
Louis Filstroff
Cédric Févotte
20
15
0
17 Dec 2018
Unsupervised learning with GLRM feature selection reveals novel
  traumatic brain injury phenotypes
Unsupervised learning with GLRM feature selection reveals novel traumatic brain injury phenotypes
A. Masino
Kaitlin A. Folweiler
11
6
0
30 Nov 2018
XPCA: Extending PCA for a Combination of Discrete and Continuous
  Variables
XPCA: Extending PCA for a Combination of Discrete and Continuous Variables
Clifford Anderson-Bergman
T. Kolda
Kina Kincher-Winoto
11
11
0
22 Aug 2018
Generalized Canonical Polyadic Tensor Decomposition
Generalized Canonical Polyadic Tensor Decomposition
David Hong
T. Kolda
J. Duersch
20
123
0
22 Aug 2018
Decentralized Dictionary Learning Over Time-Varying Digraphs
Decentralized Dictionary Learning Over Time-Varying Digraphs
Amir Daneshmand
Ying Sun
G. Scutari
F. Facchinei
Brian M. Sadler
FedML
32
10
0
17 Aug 2018
Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex
Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex
Hongyang R. Zhang
Junru Shao
Ruslan Salakhutdinov
36
14
0
06 Jun 2018
Causal Inference with Noisy and Missing Covariates via Matrix
  Factorization
Causal Inference with Noisy and Missing Covariates via Matrix Factorization
Nathan Kallus
Xiaojie Mao
Madeleine Udell
CML
8
62
0
03 Jun 2018
Low-Rank Boolean Matrix Approximation by Integer Programming
Low-Rank Boolean Matrix Approximation by Integer Programming
R. Kovacs
Oktay Gunluk
Raphael Andreas Hauser
15
3
0
13 Mar 2018
Panoramic Robust PCA for Foreground-Background Separation on Noisy,
  Free-Motion Camera Video
Panoramic Robust PCA for Foreground-Background Separation on Noisy, Free-Motion Camera Video
Brian E. Moore
Chen Gao
R. Nadakuditi
42
38
0
18 Dec 2017
SILVar: Single Index Latent Variable Models
SILVar: Single Index Latent Variable Models
Jonathan Mei
José M. F. Moura
15
24
0
09 May 2017
Bayesian Optimization for Machine Learning : A Practical Guidebook
Bayesian Optimization for Machine Learning : A Practical Guidebook
Ian Dewancker
M. McCourt
Scott C. Clark
11
61
0
14 Dec 2016
Dynamic Assortment Personalization in High Dimensions
Dynamic Assortment Personalization in High Dimensions
Nathan Kallus
Madeleine Udell
29
66
0
18 Oct 2016
Coordinate Descent Methods for Symmetric Nonnegative Matrix
  Factorization
Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization
A. Vandaele
Nicolas Gillis
Qi Lei
Kai Zhong
Inderjit Dhillon
13
53
0
04 Sep 2015
Factorbird - a Parameter Server Approach to Distributed Matrix
  Factorization
Factorbird - a Parameter Server Approach to Distributed Matrix Factorization
Sebastian Schelter
Venu Satuluri
R. Zadeh
24
36
0
03 Nov 2014
Convex Optimization in Julia
Convex Optimization in Julia
Madeleine Udell
Karanveer Mohan
David Zeng
Jenny Hong
Steven Diamond
Stephen P. Boyd
29
162
0
17 Oct 2014
Factoring nonnegative matrices with linear programs
Factoring nonnegative matrices with linear programs
Victor Bittorf
Benjamin Recht
Christopher Ré
J. Tropp
81
204
0
06 Jun 2012
1