ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.13748
18
1

Archetypal Analysis++: Rethinking the Initialization Strategy

31 January 2023
Sebastian Mair
Jens Sjölund
ArXivPDFHTML
Abstract

Archetypal analysis is a matrix factorization method with convexity constraints. Due to local minima, a good initialization is essential, but frequently used initialization methods yield either sub-optimal starting points or are prone to get stuck in poor local minima. In this paper, we propose archetypal analysis++ (AA++), a probabilistic initialization strategy for archetypal analysis that sequentially samples points based on their influence on the objective function, similar to kkk-means++. In fact, we argue that kkk-means++ already approximates the proposed initialization method. Furthermore, we suggest to adapt an efficient Monte Carlo approximation of kkk-means++ to AA++. In an extensive empirical evaluation of 15 real-world data sets of varying sizes and dimensionalities and considering two pre-processing strategies, we show that AA++ almost always outperforms all baselines, including the most frequently used ones.

View on arXiv
Comments on this paper