ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.00030
11
6

Unsupervised learning with GLRM feature selection reveals novel traumatic brain injury phenotypes

30 November 2018
A. Masino
Kaitlin A. Folweiler
ArXivPDFHTML
Abstract

Baseline injury categorization is important to traumatic brain injury (TBI) research and treatment. Current categorization is dominated by symptom-based scores that insufficiently capture injury heterogeneity. In this work, we apply unsupervised clustering to identify novel TBI phenotypes. Our approach uses a generalized low-rank model (GLRM) model for feature selection in a procedure analogous to wrapper methods. The resulting clusters reveal four novel TBI phenotypes with distinct feature profiles and that correlate to 90-day functional and cognitive status.

View on arXiv
Comments on this paper