Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1409.0578
Cited By
v1
v2 (latest)
Consistency and fluctuations for stochastic gradient Langevin dynamics
1 September 2014
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Consistency and fluctuations for stochastic gradient Langevin dynamics"
47 / 147 papers shown
Title
Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time
Hejian Sang
Jia-Wei Liu
ODL
112
1
0
23 May 2018
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Yichi Zhang
Zhijian Ou
62
0
0
01 Mar 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
63
9
0
12 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
92
145
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
76
38
0
25 Dec 2017
Natural Langevin Dynamics for Neural Networks
Gaétan Marceau-Caron
Yann Ollivier
BDL
85
31
0
04 Dec 2017
Particle Optimization in Stochastic Gradient MCMC
Changyou Chen
Ruiyi Zhang
65
10
0
29 Nov 2017
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
84
11
0
02 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
144
298
0
29 Sep 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
109
33
0
26 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
100
28
0
04 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
129
57
0
04 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
120
62
0
02 Aug 2017
Mini-batch Tempered MCMC
Dangna Li
W. Wong
92
6
0
31 Jul 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
80
6
0
20 Jun 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
102
101
0
16 Jun 2017
Stochastic Gradient Monomial Gamma Sampler
Yizhe Zhang
Changyou Chen
Zhe Gan
Ricardo Henao
Lawrence Carin
BDL
81
11
0
05 Jun 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
88
31
0
08 May 2017
Efficient variational Bayesian neural network ensembles for outlier detection
Nick Pawlowski
Miguel Jaques
Ben Glocker
BDL
UQCV
57
13
0
20 Mar 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
110
236
0
18 Feb 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
139
41
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
172
117
0
21 Nov 2016
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
93
163
0
21 Oct 2016
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
79
74
0
17 Oct 2016
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
79
9
0
15 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
107
18
0
12 Sep 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
96
233
0
11 Jul 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
99
50
0
27 May 2016
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
101
219
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
132
29
0
20 May 2016
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
114
87
0
16 Feb 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
72
62
0
10 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
199
70
0
31 Dec 2015
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
Changyou Chen
David Carlson
Zhe Gan
Chunyuan Li
Lawrence Carin
98
90
0
25 Dec 2015
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
119
327
0
23 Dec 2015
Guaranteed inference in topic models
Khoat Than
Tung Doan
37
8
0
10 Dec 2015
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Côté
Sebastian J. Vollmer
Arnaud Doucet
140
237
0
08 Oct 2015
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
159
73
0
09 Jun 2015
Parallel Stochastic Gradient Markov Chain Monte Carlo for Matrix Factorisation Models
Umut Simsekli
Hazal Koptagel
Hakan Güldaş
taylan. cemgil
Figen Oztoprak
Ilker Birbil
117
12
0
03 Jun 2015
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
76
279
0
11 May 2015
Fast Differentially Private Matrix Factorization
Ziqi Liu
Yu Wang
Alex Smola
FedML
103
124
0
06 May 2015
Fast Sampling for Bayesian Max-Margin Models
Wenbo Hu
Jun Zhu
Bo Zhang
BDL
57
0
0
27 Apr 2015
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
140
108
0
13 Mar 2015
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
135
21
0
04 Feb 2015
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
116
31
0
22 Jan 2015
(Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics
Sebastian J. Vollmer
K. Zygalakis
and Yee Whye Teh
104
49
0
02 Jan 2015
Big Learning with Bayesian Methods
Jun Zhu
Jianfei Chen
Wenbo Hu
Bo Zhang
BDL
544
84
0
24 Nov 2014
Previous
1
2
3