ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.0578
  4. Cited By
Consistency and fluctuations for stochastic gradient Langevin dynamics
v1v2 (latest)

Consistency and fluctuations for stochastic gradient Langevin dynamics

1 September 2014
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
ArXiv (abs)PDFHTML

Papers citing "Consistency and fluctuations for stochastic gradient Langevin dynamics"

47 / 147 papers shown
Title
Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and
  Saddle Point Escape Time
Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time
Hejian Sang
Jia-Wei Liu
ODL
112
1
0
23 May 2018
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Yichi Zhang
Zhijian Ou
62
0
0
01 Mar 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale
  problems
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
63
9
0
12 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
92
145
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
76
38
0
25 Dec 2017
Natural Langevin Dynamics for Neural Networks
Natural Langevin Dynamics for Neural Networks
Gaétan Marceau-Caron
Yann Ollivier
BDL
85
31
0
04 Dec 2017
Particle Optimization in Stochastic Gradient MCMC
Particle Optimization in Stochastic Gradient MCMC
Changyou Chen
Ruiyi Zhang
65
10
0
29 Nov 2017
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
84
11
0
02 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
144
298
0
29 Sep 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
109
33
0
26 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
100
28
0
04 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
129
57
0
04 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
120
62
0
02 Aug 2017
Mini-batch Tempered MCMC
Mini-batch Tempered MCMC
Dangna Li
W. Wong
92
6
0
31 Jul 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an
  Application to Langevin Dynamics and SGVI
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
80
6
0
20 Jun 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
102
101
0
16 Jun 2017
Stochastic Gradient Monomial Gamma Sampler
Stochastic Gradient Monomial Gamma Sampler
Yizhe Zhang
Changyou Chen
Zhe Gan
Ricardo Henao
Lawrence Carin
BDL
81
11
0
05 Jun 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
88
31
0
08 May 2017
Efficient variational Bayesian neural network ensembles for outlier
  detection
Efficient variational Bayesian neural network ensembles for outlier detection
Nick Pawlowski
Miguel Jaques
Ben Glocker
BDLUQCV
57
13
0
20 Mar 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
110
236
0
18 Feb 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language
  Modeling
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDLUQCV
139
41
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
172
117
0
21 Nov 2016
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
93
163
0
21 Oct 2016
Black-box Importance Sampling
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
79
74
0
17 Oct 2016
Multilevel Monte Carlo for Scalable Bayesian Computations
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
79
9
0
15 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
107
18
0
12 Sep 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
96
233
0
11 Jul 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
99
50
0
27 May 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
101
219
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
132
29
0
20 May 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
114
87
0
16 Feb 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
72
62
0
10 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
199
70
0
31 Dec 2015
Bridging the Gap between Stochastic Gradient MCMC and Stochastic
  Optimization
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
Changyou Chen
David Carlson
Zhe Gan
Chunyuan Li
Lawrence Carin
98
90
0
25 Dec 2015
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODLBDL
119
327
0
23 Dec 2015
Guaranteed inference in topic models
Guaranteed inference in topic models
Khoat Than
Tung Doan
37
8
0
10 Dec 2015
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Côté
Sebastian J. Vollmer
Arnaud Doucet
140
237
0
08 Oct 2015
Provable Bayesian Inference via Particle Mirror Descent
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
159
73
0
09 Jun 2015
Parallel Stochastic Gradient Markov Chain Monte Carlo for Matrix
  Factorisation Models
Parallel Stochastic Gradient Markov Chain Monte Carlo for Matrix Factorisation Models
Umut Simsekli
Hazal Koptagel
Hakan Güldaş
taylan. cemgil
Figen Oztoprak
Ilker Birbil
117
12
0
03 Jun 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
76
279
0
11 May 2015
Fast Differentially Private Matrix Factorization
Fast Differentially Private Matrix Factorization
Ziqi Liu
Yu Wang
Alex Smola
FedML
103
124
0
06 May 2015
Fast Sampling for Bayesian Max-Margin Models
Fast Sampling for Bayesian Max-Margin Models
Wenbo Hu
Jun Zhu
Bo Zhang
BDL
57
0
0
27 Apr 2015
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
140
108
0
13 Mar 2015
Bayesian computation: a perspective on the current state, and sampling
  backwards and forwards
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
135
21
0
04 Feb 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
116
31
0
22 Jan 2015
(Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics
(Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics
Sebastian J. Vollmer
K. Zygalakis
and Yee Whye Teh
104
49
0
02 Jan 2015
Big Learning with Bayesian Methods
Big Learning with Bayesian Methods
Jun Zhu
Jianfei Chen
Wenbo Hu
Bo Zhang
BDL
544
84
0
24 Nov 2014
Previous
123