ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.0578
  4. Cited By
Consistency and fluctuations for stochastic gradient Langevin dynamics

Consistency and fluctuations for stochastic gradient Langevin dynamics

1 September 2014
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
ArXivPDFHTML

Papers citing "Consistency and fluctuations for stochastic gradient Langevin dynamics"

46 / 46 papers shown
Title
Drift to Remember
Drift to Remember
Jin Du
X. Zhang
Hao Shen
Xun Xian
Ganghua Wang
Jiawei Zhang
Yuhong Yang
Na Li
Jia Liu
Jie Ding
CLL
16
0
0
21 Sep 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
27
3
0
14 May 2024
Scalable Bayesian inference for the generalized linear mixed model
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
26
0
0
05 Mar 2024
Sampling and estimation on manifolds using the Langevin diffusion
Sampling and estimation on manifolds using the Langevin diffusion
Karthik Bharath
Alexander Lewis
Akash Sharma
M. Tretyakov
DiffM
69
5
0
22 Dec 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
23
20
0
29 May 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
117
4
0
05 Jan 2023
A Dynamical System View of Langevin-Based Non-Convex Sampling
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
29
4
0
25 Oct 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
37
11
0
19 Jul 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
14
11
0
15 Jun 2022
Distributed data analytics
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
19
2
0
26 Mar 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
23
10
0
20 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
22
16
0
09 Dec 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
30
21
0
10 Oct 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian
  Monte Carlo
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
34
27
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC
  via Variance Reduction
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
14
8
0
02 Oct 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
18
93
0
15 Jun 2020
Powering One-shot Topological NAS with Stabilized Share-parameter Proxy
Powering One-shot Topological NAS with Stabilized Share-parameter Proxy
Ronghao Guo
Chen Lin
Chuming Li
Keyu Tian
Ming-hui Sun
Lu Sheng
Junjie Yan
BDL
13
17
0
21 May 2020
Federated Stochastic Gradient Langevin Dynamics
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
11
24
0
23 Apr 2020
Estimating Motion Uncertainty with Bayesian ICP
Estimating Motion Uncertainty with Bayesian ICP
F. A. Maken
F. Ramos
Lionel Ott
3DPC
22
9
0
16 Apr 2020
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
10
1
0
21 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
On stochastic gradient Langevin dynamics with dependent data streams in
  the logconcave case
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
13
37
0
06 Dec 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
10
46
0
05 Sep 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
13
86
0
29 May 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
20
144
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
27
38
0
25 Dec 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
13
32
0
26 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
32
57
0
04 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
25
62
0
02 Aug 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
22
101
0
16 Jun 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language
  Modeling
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
45
41
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
22
116
0
21 Nov 2016
Multilevel Monte Carlo for Scalable Bayesian Computations
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
21
9
0
15 Sep 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
16
49
0
27 May 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
11
216
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Y. Zou
49
29
0
20 May 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
14
59
0
10 Feb 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
22
319
0
23 Dec 2015
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Coté
Sebastian J. Vollmer
Arnaud Doucet
21
236
0
08 Oct 2015
Provable Bayesian Inference via Particle Mirror Descent
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
28
70
0
09 Jun 2015
Parallel Stochastic Gradient Markov Chain Monte Carlo for Matrix
  Factorisation Models
Parallel Stochastic Gradient Markov Chain Monte Carlo for Matrix Factorisation Models
Umut Simsekli
Hazal Koptagel
Hakan Güldaş
taylan. cemgil
Figen Oztoprak
Ilker Birbil
23
12
0
03 Jun 2015
Fast Differentially Private Matrix Factorization
Fast Differentially Private Matrix Factorization
Ziqi Liu
Yu-Xiang Wang
Alex Smola
FedML
40
124
0
06 May 2015
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
40
107
0
13 Mar 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
24
31
0
22 Jan 2015
1