ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.0578
  4. Cited By
Consistency and fluctuations for stochastic gradient Langevin dynamics
v1v2 (latest)

Consistency and fluctuations for stochastic gradient Langevin dynamics

1 September 2014
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
ArXiv (abs)PDFHTML

Papers citing "Consistency and fluctuations for stochastic gradient Langevin dynamics"

50 / 147 papers shown
Title
The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions
The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions
Devin Kwok
Gül Sena Altıntaş
Colin Raffel
David Rolnick
28
0
0
16 Jun 2025
The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well
M. Feder
Ruediger Urbanke
Yaniv Fogel
20
0
0
09 Jun 2025
Continuous Policy and Value Iteration for Stochastic Control Problems and Its Convergence
Qi Feng
Gu Wang
19
0
0
09 Jun 2025
Accelerating Constrained Sampling: A Large Deviations Approach
Accelerating Constrained Sampling: A Large Deviations Approach
Yingli Wang
Changwei Tu
Xiaoyu Wang
Lingjiong Zhu
27
0
0
09 Jun 2025
Enhanced DACER Algorithm with High Diffusion Efficiency
Enhanced DACER Algorithm with High Diffusion Efficiency
Yinuo Wang
Mining Tan
Wenjun Zou
Haotian Lin
Xujie Song
...
Guojian Zhan
Tianze Zhu
Shiqi Liu
Jingliang Duan
Shengbo Eben Li
DiffM
85
0
0
29 May 2025
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
221
2
0
16 May 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDLUQCV
105
0
0
02 Mar 2025
Self-normalized Cramér-type Moderate Deviation of Stochastic Gradient
  Langevin Dynamics
Self-normalized Cramér-type Moderate Deviation of Stochastic Gradient Langevin Dynamics
Hongsheng Dai
Xiequan Fan
Jianya Lu
42
1
0
29 Oct 2024
Drift to Remember
Drift to Remember
Jin Du
Xinsong Zhang
Hao Shen
Xun Xian
Ganghua Wang
Jiawei Zhang
Yuhong Yang
Na Li
Jia Liu
Jie Ding
CLL
53
0
0
21 Sep 2024
Variational Learning of Gaussian Process Latent Variable Models through
  Stochastic Gradient Annealed Importance Sampling
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
62
0
0
13 Aug 2024
Generative vs. Discriminative modeling under the lens of uncertainty
  quantification
Generative vs. Discriminative modeling under the lens of uncertainty quantification
Elouan Argouarc'h
François Desbouvries
Eric Barat
Eiji Kawasaki
UQCV
78
0
0
13 Jun 2024
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear
  Inverse Problems
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems
Lorenzo Baldassari
Ali Siahkoohi
Josselin Garnier
K. Sølna
Maarten V. de Hoop
DiffM
129
2
0
24 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
88
3
0
14 May 2024
Energy-based Hopfield Boosting for Out-of-Distribution Detection
Energy-based Hopfield Boosting for Out-of-Distribution Detection
Claus Hofmann
Simon Schmid
Bernhard Lehner
Daniel Klotz
Sepp Hochreiter
OODD
110
9
0
14 May 2024
Stochastic Gradient MCMC for Massive Geostatistical Data
Stochastic Gradient MCMC for Massive Geostatistical Data
M. Abba
Brian J. Reich
Reetam Majumder
Brandon Feng
57
1
0
07 May 2024
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Yaxin Fang
Faming Liang
CML
73
2
0
27 Mar 2024
An Improved Analysis of Langevin Algorithms with Prior Diffusion for
  Non-Log-Concave Sampling
An Improved Analysis of Langevin Algorithms with Prior Diffusion for Non-Log-Concave Sampling
Xunpeng Huang
Hanze Dong
Difan Zou
Tong Zhang
82
0
0
10 Mar 2024
Scalable Bayesian inference for the generalized linear mixed model
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
72
0
0
05 Mar 2024
Accelerating Approximate Thompson Sampling with Underdamped Langevin
  Monte Carlo
Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
Haoyang Zheng
Wei Deng
Christian Moya
Guang Lin
103
6
0
22 Jan 2024
Sampling and estimation on manifolds using the Langevin diffusion
Sampling and estimation on manifolds using the Langevin diffusion
Karthik Bharath
Alexander Lewis
Akash Sharma
M. Tretyakov
DiffM
156
5
0
22 Dec 2023
Asynchronous Local Computations in Distributed Bayesian Learning
Asynchronous Local Computations in Distributed Bayesian Learning
Kinjal Bhar
He Bai
Jemin George
Carl E. Busart
46
0
0
06 Nov 2023
Langevin Quasi-Monte Carlo
Langevin Quasi-Monte Carlo
Sifan Liu
BDL
57
4
0
22 Sep 2023
Constructing Semantics-Aware Adversarial Examples with Probabilistic
  Perspective
Constructing Semantics-Aware Adversarial Examples with Probabilistic Perspective
Andi Zhang
Mingtian Zhang
Damon J. Wischik
GANAAML
62
1
0
01 Jun 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDLOffRL
114
23
0
29 May 2023
Bayes Complexity of Learners vs Overfitting
Bayes Complexity of Learners vs Overfitting
Grzegorz Gluch
R. Urbanke
UQCVBDL
20
1
0
13 Mar 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
69
0
0
17 Feb 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
444
4
0
05 Jan 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
71
0
0
18 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
109
21
0
15 Dec 2022
Bayesian autoencoders for data-driven discovery of coordinates,
  governing equations and fundamental constants
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
90
22
0
19 Nov 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
61
0
0
28 Oct 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
87
4
0
25 Oct 2022
Nonlinear Sufficient Dimension Reduction with a Stochastic Neural
  Network
Nonlinear Sufficient Dimension Reduction with a Stochastic Neural Network
Siqi Liang
Y. Sun
F. Liang
BDL
71
11
0
09 Oct 2022
Functional Central Limit Theorem and Strong Law of Large Numbers for
  Stochastic Gradient Langevin Dynamics
Functional Central Limit Theorem and Strong Law of Large Numbers for Stochastic Gradient Langevin Dynamics
A. Lovas
Miklós Rásonyi
34
1
0
05 Oct 2022
Tuning Stochastic Gradient Algorithms for Statistical Inference via
  Large-Sample Asymptotics
Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
Jeffrey Negrea
Jun Yang
Haoyue Feng
Daniel M. Roy
Jonathan H. Huggins
65
1
0
25 Jul 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
106
11
0
19 Jul 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
60
11
0
15 Jun 2022
Concentration analysis of multivariate elliptic diffusion processes
Concentration analysis of multivariate elliptic diffusion processes
Cathrine Aeckerle-Willems
Claudia Strauch
Lukas Trottner
103
1
0
07 Jun 2022
Distributed data analytics
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
74
2
0
26 Mar 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
81
10
0
20 Feb 2022
Energy-Based Models for Functional Data using Path Measure Tilting
Energy-Based Models for Functional Data using Path Measure Tilting
Jen Ning Lim
Sebastian J. Vollmer
Lorenz Wolf
Andrew Duncan
80
3
0
04 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao Song
Guang Lin
FedML
93
17
0
09 Dec 2021
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
99
24
0
25 Nov 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDLUQCV
99
21
0
10 Oct 2021
Geometry-informed irreversible perturbations for accelerated convergence
  of Langevin dynamics
Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics
Benjamin J. Zhang
Youssef M. Marzouk
K. Spiliopoulos
48
8
0
18 Aug 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
92
40
0
21 Jul 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian
  Monte Carlo
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
90
4
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
242
1,178
0
07 Jul 2021
Stein ICP for Uncertainty Estimation in Point Cloud Matching
Stein ICP for Uncertainty Estimation in Point Cloud Matching
F. A. Maken
Fabio Ramos
Lionel Ott
3DV3DPC
65
27
0
07 Jun 2021
Quantifying the mini-batching error in Bayesian inference for Adaptive
  Langevin dynamics
Quantifying the mini-batching error in Bayesian inference for Adaptive Langevin dynamics
Inass Sekkat
G. Stoltz
78
4
0
21 May 2021
123
Next