Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1409.0578
Cited By
Consistency and fluctuations for stochastic gradient Langevin dynamics
1 September 2014
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Consistency and fluctuations for stochastic gradient Langevin dynamics"
50 / 56 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
43
2
0
16 May 2025
Drift to Remember
Jin Du
Xinsong Zhang
Hao Shen
Xun Xian
Ganghua Wang
Jiawei Zhang
Yuhong Yang
Na Li
Jia Liu
Jie Ding
CLL
21
0
0
21 Sep 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
32
3
0
14 May 2024
Energy-based Hopfield Boosting for Out-of-Distribution Detection
Claus Hofmann
Simon Schmid
Bernhard Lehner
Daniel Klotz
Sepp Hochreiter
OODD
45
8
0
14 May 2024
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
32
0
0
05 Mar 2024
Sampling and estimation on manifolds using the Langevin diffusion
Karthik Bharath
Alexander Lewis
Akash Sharma
M. Tretyakov
DiffM
77
5
0
22 Dec 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
28
20
0
29 May 2023
Fast Replica Exchange Stochastic Gradient Langevin Dynamics
Guanxun Li
Guang Lin
Zecheng Zhang
Quan Zhou
179
4
0
05 Jan 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
28
0
0
18 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
40
4
0
25 Oct 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
39
11
0
19 Jul 2022
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
19
11
0
15 Jun 2022
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
29
2
0
26 Mar 2022
Interacting Contour Stochastic Gradient Langevin Dynamics
Wei Deng
Siqi Liang
Botao Hao
Guang Lin
F. Liang
BDL
41
10
0
20 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
30
16
0
09 Dec 2021
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
40
21
0
10 Oct 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
59
1,111
0
07 Jul 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
42
27
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
33
8
0
02 Oct 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Powering One-shot Topological NAS with Stabilized Share-parameter Proxy
Ronghao Guo
Chen Lin
Chuming Li
Keyu Tian
Ming Sun
Lu Sheng
Junjie Yan
BDL
29
17
0
21 May 2020
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
21
24
0
23 Apr 2020
Estimating Motion Uncertainty with Bayesian ICP
F. A. Maken
F. Ramos
Lionel Ott
3DPC
30
9
0
16 Apr 2020
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
19
20
0
02 Apr 2020
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
34
42
0
23 Oct 2019
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
31
1
0
21 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
21
37
0
06 Dec 2018
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Ya-Ping Hsieh
Chen Liu
S. Chakrabartty
GAN
24
91
0
23 Oct 2018
Fluctuation-dissipation relations for stochastic gradient descent
Sho Yaida
32
73
0
28 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
21
86
0
29 May 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
30
144
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
41
38
0
25 Dec 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
24
32
0
26 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
46
57
0
04 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
29
62
0
02 Aug 2017
Mini-batch Tempered MCMC
Dangna Li
W. Wong
26
5
0
31 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
30
101
0
16 Jun 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
53
41
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
38
116
0
21 Nov 2016
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
21
9
0
15 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
33
18
0
12 Sep 2016
Merging MCMC Subposteriors through Gaussian-Process Approximations
Christopher Nemeth
Chris Sherlock
22
49
0
27 May 2016
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
24
217
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
49
29
0
20 May 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
14
61
0
10 Feb 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
27
320
0
23 Dec 2015
1
2
Next